Monday, Feb 20, 2023
Lecture \# 15
MSS 6000
Announcements

* Hi 2 due Wednesday, Feb 22, 11:59 pm
* Normal Office Haws today, lom-2pm Cu307
$\begin{aligned} & * \text { Midterm Exam } \rightarrow \text { Wed, March } 8 \\ & \text { Fri, March } 10 \text { ? }\end{aligned}$
$\frac{\text { Topic 6- Divide and Conquer }}{\text { Sorting a list (easy) }}$
Ex \#2 - The simplest divide-and-conquer algorithm is called "binary search."

In thinking of a \# between 1 and 100. You have 7 guesses, and after each guess Ill tell you higher or lower.
\#1) 50 - lower
\#2) 25 - lower
\#3) 10 - higher

$$
11-24
$$

\#4) 16 - lower

$$
\pi, 12,13,14,15
$$

\#5) 13 - higher
\# 6) 14 - higher
\#7) 15
It's always possible to win in 7 guesses.

$$
2^{6}=64^{1}<100 \quad 2^{7}=128>100
$$

\#1-1000 how many guesses? $10 \quad\left(2^{\circ}=1024\right)$
Recurrence:

$$
T(n)=1 \cdot T\left(\frac{n}{2}\right)+1
$$

Solution: $T(n)=O(\log (n)) \quad O\left(\log _{2}(n)\right)$
these are the same $m O$-notation

$$
\frac{\log _{10}(n)}{\log _{10}(2)}=\log _{2}(n)
$$

This is how python answers if you ask if something is in a set OR if you
look up a value in a dictionary.
Items in sets must be hashable
(immutable)
Python keeps a sorted list of the hashes of elements in your set.
When you ask it something is in the set, it does a binary search on the list of hashes.

$2 \in[1,2,3]$	$2 \in\{1,2,3\}$
$O(n)$	$O(\log (n))$

Ex \#3: Counting Inversions (medium) Consider a list of distinct \#s.

$$
L=\begin{array}{llllllll}
3 & 19 & -7 & 2 & 1 & 6 & 0 & -10
\end{array}
$$

An inversion is a pair of entries $\left(L_{i}, L_{j}\right), i \notin i_{j n}$ where $i<j$ but $L_{i}>L_{j}$.
(an out-of-ouder par)
Ex: $(3,6)$ is not an inversion

$$
(3,2) \text { is }
$$

This list has $5+6+1+3+2+2+1=20$ inversions
Goal: Compute the \# of inversions in a list with a elements
Obvious Algorithm: check all pars one-by-one $O\left(n^{2}\right)$

Divide + Conquer:

$$
L=\begin{array}{llll}
3 & 19 & -7 & 2
\end{array} \underbrace{1}_{1} \begin{array}{llll}
1 & 6 & 0 & -10
\end{array}]
$$

recursively count inversions recursively count inversions 4 inv. S inv.
We are successfully counting 9 inv. within the individual halves, but missing the II with one entry in one half and are in the other.

One way to do this that doesn't help is to loop over all (blue, red) pairs and clack them. \# of these is:

$$
\left(\frac{n}{2}\right) \cdot\left(\frac{n}{2}\right)=\frac{n^{2}}{4}=O\left(n^{2}\right)
$$

Here's the trick: While were counting inversions, we're also going to sort the list. (sorting takes $O(n \cdot \log (n))$ but were going to do it in the recursion, like merge sort.

$$
L=\frac{\left.\begin{array}{lllllll}
3 & 19 & -7 & 21 & \frac{1}{4} \quad 6 & 0 & -10 \\
-7 & 2 & 13 & 19 & -10 & 0 & 16
\end{array}\right]}{}
$$

Now we recombine the lists just like merge sort and when do we detect a (blue, red) inversion? Any time we take from the red list, that entry makes an inversion with every entry left m the blue list.

(blue, red) inversions

$$
4+5+11=20
$$

Recurrence:

$$
T(n)=2 T\left(\frac{n}{2}\right)+2 n^{\kappa^{\text {rough }} \text { sense }}
$$

$$
T(n)=O(n \cdot \log (n))
$$

much faster than $O\left(u^{2}\right)$.
Ill send you Closest Points.

$$
O\left(n^{2}\right) \rightarrow O(n \cdot \log (n))
$$

Other famous divide-and-conquer examples
Integer Multiplication
Input: Two n-digit \#s x and y
Output: $x \cdot y$

Simple algaithm:

$$
\begin{array}{r}
172 \\
\times 424 \\
\hline 688 \\
3440 \\
68800 \\
\hline 72928
\end{array}
$$

D+C: Recurrence: $T(n)=3-T\left(\frac{n}{2}\right)+n$

$$
\Rightarrow T(n)=O\left(n^{\log _{2}(3)}\right)=O\left(n^{1.59 \ldots}\right)
$$

Matrix Multiplicotion: (wikipedia page)
Naive algo: $O\left(n^{3}\right)$ two $n \times n$ matimes

$$
\begin{gathered}
O\left(n^{2.7}\right) \\
\vdots \\
O\left(n^{2 \cdots \cdots}\right)
\end{gathered}
$$

