Monday, Feb 15, 2023
Lecture \# 13
MSS 6000
Announcements

* HIV 2 due Wednesday, Feb 22, 11:59 pm
* Office Hours today, 2:30pm-3:30pm, on Teams

Summary of Bute Force
Pros - very easy to code
fewer bugs
guaranteed optimal
finds all optimal solutions
good to test other methods against
Cons - SLOW, usually can only do small cases
\leadsto weighted interval / knapsack

$$
\left(2^{n}\right)
$$

n up to 20-30 in a few minutes
\rightarrow pairs of points $\binom{n}{2} \approx n^{2}$
$n=100,000$ in a minute

How do we find optimal solutions?
(1) Don't bother -greedy algos * not optimal
(2) Wonder around the search space
rondtmly, keeping track of the * not opt. best thing you've seen so for.
13) Wander around the search space cleverly, keeping track of the best thing you've seen so far. * not optimal (metaheuristics)
(4) Check everything in the search space ove-by-one. (Brute Farce)
(5) Check or otherwise rule out everything in the search space.
(dwide-and-conquer, backtracking. branch-and-bound)
optimal. but sometimes fast and sometimes slow, not flexible

Two python lessons

1) List Slicing
2) Recursion

Topic 6-Divide and Conquer
"Divide and Conquer" is an algorithmic Paradigm that is roughly:

1) Split the input in half
2) Solve the problem on each half Separately (recursion)
3) Combine the two answers into one big answer

Classic Example: Sorting a list

* We can phrase this as a constraint problem.
* Input: n numbers
* Search Space: All orderings of n things These are called permutations and the \# of them is

$$
\begin{aligned}
& n!=n(n-1)(n-2) \cdots \cdot 3 \cdot 2 \cdot 1 \\
& n!\approx \frac{n^{n}}{e^{n}} \text { very big }
\end{aligned}
$$

Goal: Find the permutation of the \#s
that is in increasing order.

* Obvious optimal algaithm" (greedy-ish)
- Find the smallest thug g, put it first
- Fid the next smallest thing, put it second
- and so on

How many steps does this take?

* Fooling the $k^{+\frac{L}{n}}$ smallest thing takes $x n$ steps (have to search the whole list)
* We have to do this n times.

$$
*(n \text { steps }) *(n \text { times })=O\left(n^{2}\right)
$$

1000 items $\leadsto 2000$ items 10 s to sort $\leadsto 40 \mathrm{~s}$ to sort $n^{2} \quad$ vs. $(2 n)^{2}=4 n^{2}$

* Divide-and-Conquer can do this in $O(n \cdot \log (n))$.

$$
O(n \cdot \log (n)) \text { is way }
$$ better than $O\left(n^{2}\right)$.

1) Split the input \#s in half
2) Sort each half (recursively, by D + C ing again)
3) Combine the two seated halves into one big sorted list.

Ex: $\begin{array}{cccc}\left.\begin{array}{llll}3 & 19 & -7 & 2\end{array}\right) & \left.\begin{array}{llll}1 & 6 & 0 & -10\end{array}\right] \\ >\end{array}$

$$
\frac{319}{\downarrow \downarrow} \frac{-72}{\downarrow}
$$

(3) $19,-712, \quad$ To Be continued!

