Monday, Feb 13, 2023 Lecture \# 12
MSS 6000
Announcements

* WW 2 due Wednesday, Feb 22, 11:59 pm
* Office Hours today, lpm-2pm, cu 307

Lecture 5-Search Space and Bute Force
Most of our problems can be summarized as:
"Out of all ways to do [blank]:
(1) Do any of them satisfy a list of constraints
and /or
(2) Which are is optimal?

Greedy algor. give us a quick way to get a [blank] that might be decent.
but in most cases is not guaranteed (2) to be optimal.

They doit check every [blank]. Usually they only check a single one.

The search space of a problem is the set of all possible "things" that may or may not satisfy the contraints, and that may have a score that you wont to minimize or maximize.

The next few lectures: ways to find optimal solutions by either checking the entire search space ar (usually) not.

Most obvious: brute face
generate every single element in the search space one-by-one

- check if it satisfies the constr.
- if so, check its score

Ex 1. Weighted Interval Scheduling 3 requests

Search space: all subsets of $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$

candidate	satisfies constr?	score
$\{\xi$	\checkmark	0
$\left\{\omega_{1}\right\}$	\checkmark	3
$\left\{\omega_{2}\right\}$	\checkmark	6
$\left\{\omega_{3}\right\}$		2
$\left\{\omega_{1,}, \omega_{2}\right\}$	\checkmark	9
$\left\{\omega_{1}, \omega_{3}\right\}$	$\boxed{ }$	5
$\left\{\omega_{2}, \omega_{3}\right\}$	X	8
$\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$	X	11

Optimal sol: a solution that satisfies constr. and has highest poss. score

Question: If you have a set of size n, how many subsets does it have?

$$
2^{n}
$$

Psendocode

$$
\begin{aligned}
& R=\text { set of requests } \quad n=|R| \\
& b=0
\end{aligned}
$$

for each subset r of R : loops 2^{n} times
if r satisfies constraints: 3 have to go

$$
\begin{aligned}
& s=\text { score }(r) \\
& \text { if } s>b: \\
& b=s
\end{aligned}
$$

3 through each element of r to do these
return b steps

How lang does this take to sun?
Runtime is $\underbrace{O\left(n \cdot 2^{n}\right)}$ roughly $n \cdot 2^{n}$ operations for "big-O notation" the code to finish

$$
3 \cdot n \cdot 2^{n} \text { is also } O\left(n \cdot 2^{n}\right)
$$

big-0: ignore constant multipliers ignore smaller terms

$$
5 \cdot n \cdot 2^{n}+\underbrace{7 \cdot n^{2}}_{\substack{\text { insignificant } \\ \text { as } n \rightarrow \infty}} \text { is also } O\left(n \cdot 2^{n}\right)
$$

Knapsack Problem: same situation n items
search space $=$ all subsets of n items size is 2^{n}

Closest Pair Problem:
Input: n points in the $x y$-plane
Goal: Find the par that is closest (normal Euclidean distance)
Search Space $=$ all 1 pans of points unordered

Suppose our points are $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$.
The search space is

$$
\left\{\left\{p_{1}, p_{2}\right\},\left\{p_{1}, p_{3}\right\},\left\{p_{1}, p_{4}\right\},\left\{p_{2}, p_{3}\right\},\right.
$$

$$
\left.\left\{p_{2}, p_{4}\right\},\left\{p_{3}, p_{4}\right\}\right\}
$$

6 pairs
If we have x points, what's the size of our search space?

$$
(n-1)!=(n-1) \cdot(n-2) \cdot(n-3) \ldots 3-2 \cdot 1
$$

"n choose 2 " = the \# of ways to pick 2 things art of n_{1} when the order doesict matter
Notation: $\binom{n}{2}$

$$
100 \text { pouts }
$$

$$
\begin{aligned}
\text { Formula } & =\binom{n}{2}=\frac{n \cdot(n-1)}{2} \cdot \quad \begin{aligned}
\binom{100}{2} & =\frac{100 \cdot 99}{2} \\
& =50 \cdot 99 \\
& =\frac{n^{2}}{2}-\frac{n}{2}
\end{aligned} \\
& =\frac{1}{2} \cdot n^{2}=O\left(n^{2}\right) \quad \begin{array}{l}
\text { (polynomia l-time, } \\
\text { not exp. time) }
\end{array}
\end{aligned}
$$

* Surprising: there is a way to do this in $O(n \cdot \log (n))$ time. (next lecture)

Gamestop Problem from HW2:
How can we think of each possible solution (whether or not the constants are satisfied)?
n people, 60 transaction slots
A candidate is an assignment of 60 of those x people into 60 transaction slots. How many ways can that be dove?

Slot 1: n people
Slot 2: $n-1$ people
Slot 3: $n-2$ people
Slot $60=n-59$ people

Search space: All ordered lists of 60 people out of n

$$
\text { Size: } \begin{aligned}
& n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot \cdot(n-59) \\
= & n^{60}+? n^{59}+? n^{58}+\cdots \cdots \\
O & \left(n^{60}\right)
\end{aligned}
$$

Good news: polynomial, not exponential Bad news: huge power of n

NFL Schedules: search space for I week $=$ all ways of putting 32 teams in pairs $=31 \cdot 29.27 \cdot 25 \cdot \cdots \cdot 5 \cdot 3 \cdot 1$

17 weeks: this \# to the $17^{\text {th }}$ power $\approx 6.5 \times 10^{296}$

$$
10^{80}
$$

