Monday, Feb. 6, 2023
Lecture \# 9
MSS 6000
Announcements

* HO 1 due tonight, 11:59 pm
* Offre Hairs lpm-2pm in Cu 307.

Problem \#3: Weighted Interval Scheduling
This is like regular interval scheduling, except each request r_{i} comes with a value v_{i} and your goal is to maximize the total value of requests satisfied.

How does our previous greedy algo do?

Possible Greedy Algor:

* best = highest value

* best $=$ shortest meeting
* best $=$ highest value density $\underset{\rightarrow}{\frac{\text { value }}{\text { duration }}}$

There is an algorithm to fund optional solutions using a technique called "dynamic programming." Run time with a requests is $\approx n^{2}$.

Problem \# 4-Knapsack Problem
You have x items. They each have a value v_{i} and a weight w_{i}. You hove a knapsack that can carry a total weight of C. (capacity) What combination of items has a total weight $\leq C$ and the highest value?

Ex:

items	weight	value	
1	8	13	
2	3	7	Capacity $=10$
3	5	10	
4	5	10	Sone pessiblites:
5	2	1	* Items 1 and 5
6	2	1	weight: $8+2=10$
7	2	1	value $=13+1=14$

* Items 24,7

$$
\begin{aligned}
& \text { weight }=3+5+2=10 \\
& \text { value }=7+10+1=18
\end{aligned}
$$

* Items 3,4

$$
\text { weight } 5+5=10
$$

$$
\text { value }=10+10=20
$$

of taal

Greedy possibilities:

* value density $=\frac{\text { value }}{\text { weight }}$
* minimal weight
* maximum value

None of these are optimal but they do okay.

Dynamic programing can solve it quickly.
Problem \#S - Traveling Salesman Problem (TSP)
There are n cities that a salesman needs to visit, then return home. What is the shortest route that visits each city exactly once and returns back to the start?

More formally: Consider a weighted graph G. Which ordering of the vertices gives you the smallest sum of the edge weights when you traverse the vertices in that order?

One Solution:

$$
\begin{aligned}
& a \rightarrow d \rightarrow e \rightarrow c \rightarrow b \rightarrow a \\
& 4+3+6+1+7=21
\end{aligned}
$$

$$
\begin{align*}
& a \rightarrow c \rightarrow b \rightarrow e \rightarrow d \rightarrow a \tag{3}\\
& 2+1+2+3+2=10
\end{align*}
$$

Greedy algorithm:

* pick any start vertex v_{1}
* pick v_{2} to be the closest vertex to v_{1}
* pick v_{3} to be the closest unvisited vertex to v_{2}
* at the end, return home to v,

Notes: - might fail if it's not possible to go from any city to any other city

- does oleag, bar usually picks some dumb edges
- brute face (try every possibility) is very slow.

$$
\begin{aligned}
& n!=n \cdot(n-1) \cdot(n-2) \cdot(n-3) \cdots \cdot 3 \cdot 2 \cdot 1 \\
& G(n-1)!
\end{aligned}
$$

- dynamic programming version takes $\simeq n^{2} \cdot 2^{n}$ calculations

Weill learn lots of techniques ("metaheuristics") to get very good solutions quickly.

