Monday, Feb. 6, 2023 Lecture # 9 MSSC 6000 Announcements

* HW 1 due tonight, 11:59pm

* Office Hours Ipm-2pm in Cu 307. Problem #3: Weighted Interval Scheduling This is like regular interval scheduling, except each request ri comes with a value ve and your goal is to maximize the total value of requests satisfied. previous greedy algo do? flow does our pretty bad!

Possible Greedy Algos:		(2)
* best = highest value	6	
	HHHHH	
* best = shortest meeting	पव पव पुत्र वय	

* best = highest value density value duration

There is an algorithm to find optimal solutions using a fechnique called "dynamic programming." Pun time with a requests $\approx n^2$.

Problem # 4 - Knapsock Problem

You have a items. They each have a value vi and a weight wi. You have a knapsack that can carry a total weight of C. (capacity) What combination of items has a total weight & C and the highest value?

Ex:	items	weight	value	_ (3)
	1	8	13	
	2	3	7	Capacity = 10
	3	5	10	1
	4	5	10	Some possibilities:
	5	2)	* Items I and 5
	6	2	١	weight: 8+2=10
	7	2	١	volue = 13+1=14
* Items 2,4,7		* 1	teus 3,4	
(1/08mlst = 3+5+2=10				0.014: 5+5=10

weight = 3+5+2=10 value = 7+10+1=18

Weight: 5+5=10value = 10+10=20

optimal

None of these are optimal but they do okay.

Dynamic programming con solve it quickly. (9)

Problem #5 - Traveling Salesman Problem (TSP)

There are a cities that a salesman needs to visit, then return home. What is the shortest route that visits each city exactly once and returns back to the start?

More formally: Consider a weighted graph 6.

Which ordering of the vertices gives

you the smallest sum of the edge

weights when you traverse the vertices in

that order?

One Solution: $a \rightarrow d \rightarrow e \rightarrow c \rightarrow b \rightarrow a$ 4 + 3 + 6 + 1 + 7 = 21

a->c->b->e->d->a (5) 2+1+2+3+2=10

Greedy algorithm.

** pick ony Start vertex v,

** pick vz to be the closest vertex to v,

* pick vs to be the closest unvisited

vertex to vz

of the end, return home to v.

Notes: - might fail if it's not possible to go from any city to any other city

- does okay, but usually proks some dumb edges -brute force (try every possibility)

is very slow.

 $n! = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot 3 \cdot 2 \cdot 1$ 67 (n-1)! -dynamic programming version takes = n2.2" calculations We'll learn lots of techniques ("metaheuristics") to get very good solutions quickly.