Bonus Topic - Dynamic Programming
Idea: Find optimal solutions by solving subproblems, then building up bit-Ny-bit. kind of like the branching in $B+B$
Weighted Interval Scheduling a requests Brute Force: $O\left(2^{n}\right)$
Greedy: $O(n)$, but not optimal Bachtradlang $/ B+B: O\left(2^{n}\right)$

Dynamic Programming: $O(n)$ and optimal Linear time! Crazy!

Suppose we have requests

$$
R=\left\{r_{1}, r_{2}, r_{3}, \cdots, r_{n}\right\}
$$

Each request r_{i} has a value v_{i}, start time s_{i} and finch time f_{i}. Assume' we have sorted by finish time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.
Given any set S of requests, define $O(S)$ to be the score of the optimal solution using intervals in S.

Define $R_{k}=\left\{r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right\} \quad(k \leq n)$

Question: If we know $\theta\left(R_{1}\right), \theta\left(R_{2}\right), \ldots, \theta\left(R_{l-1}\right)$, then can we use this to compute $\theta\left(R_{l}\right)$?
If the answer is "yes", then we're in good shape!
$\rightarrow \sigma\left(R_{1}\right)$ is easy to compute. $\theta\left(\left\{r_{1}\right\}\right)=v_{1}$
\rightarrow Use $O\left(R_{1}\right)$ to compute $O\left(R_{2}\right)$.
$\rightarrow U_{s e} O\left(R_{1}\right)$ and $O\left(R_{2}\right)$ to compute $O\left(R_{3}\right)$.
$\rightarrow U_{S e}$ " $\theta\left(R_{1}\right), \ldots, \sigma\left(R_{n-1}\right)$ to compute $\sigma\left(R_{n}\right)$.

If we know $O\left(R_{1}\right), O\left(R_{2}\right), \sigma\left(R_{3}\right), O\left(R_{4}\right), \sigma\left(R_{5}\right)$, can we easily get $O\left(R_{6}\right)$?
Fact: r_{6} is either [in an optimal solution] or [not in any optimal solution].
If not: $\theta\left(R_{6}\right)=\theta\left(R_{5}\right)$
If $50: \theta\left(R_{6}\right)={ }_{7} r_{6}+\theta\left(R_{4}\right)$

Formula: $\theta\left(R_{6}\right)=\max \left(\theta\left(R_{5}\right)_{1} 7+\sigma\left(R_{4}\right)\right)$

$$
\theta\left(R_{6}\right)=\max (9,7+5)=(12
$$

This is a recursive formula. $=\max (9,7+5)$,

$$
\begin{aligned}
& \theta=9 \quad \theta\left(R_{6}\right)=\max \left(\theta\left(R_{5}\right), 7+\sigma\left(R_{4}\right)\right)=(12)! \\
& \theta\left(R_{5}\right)=\max \left(\theta\left(R_{4}\right), 4+\theta\left(R_{3}\right)\right) \quad \theta\left(R_{4}\right)=\max \left(\theta\left(R_{3}\right), 1+\theta\left(R_{1}\right)\right) \\
& \theta\left(R_{4}\right) \quad \theta\left(R_{3}\right)=\max \left(\theta\left(R_{2}\right), 1\right) \quad \theta\left(R_{3}\right) \quad \theta\left(R_{1}\right)=2 \\
& \theta\left(R_{1}\right)=2 \\
& \theta \max \left(R_{1}\right)=5 \\
& =\max \left(\theta\left(R_{1}\right), 5\right) \\
& \\
& =5)=5
\end{aligned}
$$

More precise:
Let $p(s)$ be the intervals in S that don't conflict with the lost element in S.
Ex: $p\left(R_{6}\right)=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$

$$
p\left(R_{y}\right)=\left\{r_{1}\right\}
$$

Then: $\theta\left(R_{k}\right)=\left\{\begin{array}{cl}0, & \text { if } R_{k}=\{ \} \\ \max \left(\theta\left(R_{k-1}\right)_{1} v_{k}+\theta\left(p\left(R_{k}\right)\right)\right) \text {, }\end{array}\right.$ $R_{k} \neq\{3$
Implemented in code like this, it will still be exponential time because of lots of repeat work.

Easy to remove duplicate work if the first time we solve a case (ex: $O\left(R_{3}\right)$), we stove the value. This is called memorization.

Pseudocode:
memo = empty dictionary sorted by end-time function wi (S) : 2 \# should return scone of if S is a key in memo: best sol return memo [s]
if $S=\{3$:
мето $[s]=0$
return 0
$r=$ last request in S
$v=$ value of r

$$
\begin{aligned}
& v=\text { value of } r \\
& \text { score }=\max \left(w i(s-\{r\}), v+w_{i}(p(s))\right) \\
& \text { mene }[s]=\text { score } \\
& \text { return score }
\end{aligned}
$$

This time is linear (not counting sorting!) What does "memo" look like at the end?

$\varnothing: 0$	$R_{4}: 5$
$R_{1}: 2$	$R_{5}: 9$
$R_{2}: 5$	$R_{6}: 12$
$R_{3}: 5$	

Once we know the best score is 12, now do we reconstruct the actual solution that has a score of 12?

$$
\begin{align*}
& \text { Score of } 12=w_{i}\left(R_{6}\right)=\max (9(12) \text { taking then and } \\
& 5=w_{i}\left(R_{4}\right)=\max (5) \text { un taking } r_{4} \text { call } \tag{5}\\
& \left.5=w_{i}\left(R_{3}\right)=\max (51) \text { not taking } r_{3}\right)
\end{align*}
$$

$S=w_{i}\left(R_{2}\right)=\max \left(2,(5)^{2}\right.$ taking r_{2} and

$$
w i(\phi)=0
$$

Best solution $\left\{r_{2}, r_{6}\right\}$.

Bonus Topic - Dynamic Programming -part 2
Example \#2 - Segmented Least Squares
Normal Linear Regression

pouts: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
goal: minimize the quantity

$$
\sum_{i=1}^{n}\left(L\left(x_{i}\right)-y_{i}\right)^{2}
$$

Bad for a dato set like this:

Segmented Least Squares

- Split the data points into k conseantive blocks
- Find the least squares line separately for each block
- Maize... some combo of \# of lines and the errors of each line
(we want to penalize each new line by a little)

Score:
$C \cdot(\#$ of lines $)+$ sum of the errors of each line
(20 is a constant that we can tweak to help us find desvable solutions.

Search Space: all ways of splitting the points (sorted m mareasing order by x-value) ito any \# of non-empty consecutive blocks.

Ex: $n=10$

$$
\begin{array}{r}
1234 \\
4 \text { blocks } 6,5 \% 10 \\
5+2+3=10 \\
4+2+3+1=10 \\
2+4+3+1=10
\end{array}
$$

These are called "mieger compositions"
Fact: \# of integer compositions of n is

$$
2^{n-1}
$$

Solving with Dynamic Programming
Each solution to this problem consists of: optimal

- The final block $p_{i}, p_{i+1}, \ldots, p_{n}$
- An optimal solution on all other points

$$
\begin{aligned}
& \left.4 \begin{array}{llllll}
12 & 3 & 4
\end{array} \right\rvert\, \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12345678}{1 \begin{array}{llll}
1 & 6701
\end{array}} \\
& \underbrace{\left.\begin{array}{ll}
2345678 \\
\hline 910
\end{array}\right)}_{\text {optimal }}
\end{aligned}
$$

Suppose:
$* e_{i, j}$ is the error of the minimum least squares line on the points $p_{i} p_{i+1}, \ldots, p_{j}$.

* $O(i)=$ the optimal score on the
pouts $P_{1}, P_{2}, \ldots, p_{i}$
What is the score of the solution that has last block go $p_{i}, p_{i+1}, \ldots, p_{n}$?

$$
\cos t=e_{i, n}+c+O(i-1)
$$

error of penalty of last line optimal cost for the last lime points $p_{1}, p_{2}, \ldots, p_{i-1}$

What is the optimal scove for $p_{11} \ldots p_{n}$? We need to pick the value of i that minimizes

$$
e_{i, n}+C+\theta(i-1)
$$

Recurrence: $\left\{\begin{array}{l}\theta(0)=0 \\ \theta(j)=\min _{1 \leq i \leq j}\left(e_{i, j}+c+\theta(i-1)\right)\end{array}\right.$
To do this m code, we can actually build from the bottom up $(\theta(0), \theta(1), \theta(2), \ldots$.$) .$
This is iterative.
memo $=\operatorname{dict}()$
memo $[0]=0$
compute e ei,j for all pars $1 \leqslant i \leqslant j \leqslant n$ for $j=1, \ldots, n$:
$\left.O C_{j}\right) \operatorname{menu}[j]=\min \left(e_{i, j}+c+\operatorname{memo}[i-1], i=1, \ldots, j\right)$ return memo [n]
Runt me: $O\left(n^{2}\right)$ (not mcluding the computation of

$$
O\left(2^{v a}\right)
$$

the $e_{i, j}$)

The key to making dynamic programining work is figuring out what you need to know.
For SLS, you only need to know the optional cost for each possible endpoint ($\sigma(i-1))$

The actual composition that gets you that score is irrelevant.

Bonus Topic -Dynamic Programming -part 3
Example \#3
Suppose we want to add item n to a solution for the first n-1 items. What do we need to know?
(1) value of that solution $\}$ two things
(2) weight of that solution $\}$
\rightarrow alternately, the amount of remarking
Consider items I_{1}, \ldots, I_{n} capacity values $v_{i}>0$, weights $\omega_{i}>0$, capacity C.
Define $\theta(j, \omega)$ to be the optimal score on items I_{1}, \cdots, I_{j} with total weight $\leq w$.

If item n is not in an optimal solution:

$$
\theta(n, c)=\theta(n-1, c)
$$

If item is m any optimal solution:

$$
\sigma(n, c)=v_{n}+\sigma\left(n-1, c-w_{n}\right)
$$

Recurrence:

$$
\theta(j, w)=\left\{\begin{array}{l}
0, \quad j=0 \\
\theta(j-1, w), \quad w_{j}>w \\
\max (\theta(j-1, w), \\
\left.v_{j}+\theta\left(j-1, w-w_{j}\right)\right)
\end{array}\right.
$$

Pretty fart. What's getting memorized?
Memo should keep track of $\theta(j, w)$ for all $1 \leq j \leq n, \quad 0 \leq \omega \leq C$
\# of items
Memo dict will have $O(n \cdot C)$ entries
This will return the optimal scone. How do you turn that into an optimal solution. Trace back through the memo dict.

Start by looking memo $[(n, c)]$
=0? Solution is empty. $\}$
$=\operatorname{memo}[(n-1, c)]$? Solution does not contain $n^{\text {th }}$ item, so go look at memo $[(n-1, c)]$ and repeat

$$
=V_{n}+\operatorname{memo}\left[\left(n-1,\left(-w_{n}\right)\right] ?\right.
$$

Solution does contain $n^{\text {th }}$ item so include it, then repeat this process with menu $\left[\left(n-1,\left(-w_{n}\right)\right]\right.$.
TSP - there is a D.P. algo for travelling salesman

Problem: it's $O\left(n \cdot 2^{n}\right)$.
Beats $O(n!)$

$$
\frac{n^{n}}{e^{n}}\left(\frac{n}{e}\right)^{n}
$$

