Lecture 3- Greedy Algorithms (continued)

There is no known greedy algo that is optimal.

How long would brute force take?

If there are n requests, then the # of subsets of requests is 2°. To check them all takes exponential time.

"big-O notation" - roughly how many steps an algorithm has to do

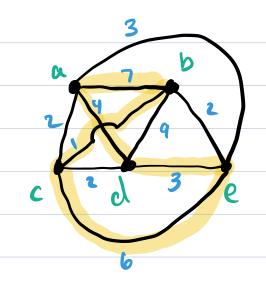
WIS is $O(n \cdot 2^n)$

Later lecture on "dynamic programming", it can be done in O(n·log(n))
great!

Problem #4- Knapsack Problem

You have a items that each have some value vi and some weight wi. You have a knapsade that can carry a total weight of C. What combination of items has the highest total value while having the sum of the weights \in C.

Ex.	item	weight	value	Capacity = 10
	-	8	13 1.625	1 0
	2	3	7 233	Some possibilities:
	3	5	10 2	* Items 1,5
	Y	5	10 2	weight=8+2=10 ~
/	5	2	(0.5	value = 14
	6	2	1 0.5	•
	7	2	(0.5	x Items 2,4,7
		•		


Items 3,4 ualue = 18 weights -5+5-0

values = 10+10 = 20

optimal for this case

* Greedy possibilities
* Greedy possibilities s best = lightest item (uglue 10 m our
example)
- best = highest value (value = 14) - best = most value dense: value (value = 18) weight
- best = most value dense: value
(value = 18) weight
None of these are the optimal value
of 30-
We'll learn that dynamic programming can
We'll learn that dynamic programming can solve it in polynomial time.
Problem #5 - Travelny Salesman Problem (TSP)
There are n cities that a salesman
needs to visit, and then return home.
What is the shortest route that
Visits each city exactly once and
Hum malines back I the destruction?

More formal: Consider a weighted graph G. Which ordering of the vertices gives you the smallest sum of the edge weights?

$a \rightarrow d \rightarrow e \rightarrow c \rightarrow b \rightarrow q$ 4+3+6+1+7=21 $e \rightarrow c \rightarrow b \rightarrow a \rightarrow d \rightarrow e$ Same 5 edges = 21

$$a \to c \to b \to e \to d \to q$$

 $2+1+2+3+2$
=10