# random solution AND random greedy solution import math import random random.seed(1) import itertools from tqdm import tqdm import matplotlib.pyplot as plt # type: ignore def euclidean_distance(pt1, pt2): return math.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2) class TSPSolution: def __init__(self, points): self.points = points def path_length(self): return sum( euclidean_distance(self.points[i], self.points[i + 1]) for i in range(len(self.points) - 1) ) + euclidean_distance(self.points[-1], self.points[0]) def tweak(self): indices = random.sample(list(range(1,len(self.points))), 2) new_points = list(self.points) new_points[indices[0]] = self.points[indices[1]] new_points[indices[1]] = self.points[indices[0]] return TSPSolution(new_points) def neighborhood(self): # new_solutions = [] total = (len(self.points)-1)*(len(self.points)-2)/2 for indices in itertools.combinations(range(1,len(self.points)),2): new_points = list(self.points) new_points[indices[0]] = self.points[indices[1]] new_points[indices[1]] = self.points[indices[0]] yield TSPSolution(new_points) # new_solutions.append(TSPSolution(new_points)) # return new_solutions def steepest_ascent(self): best_score = self.path_length() best_path = self for s in self.neighborhood(): pl = s.path_length() if pl < best_score: best_path = s best_score = pl return best_path class TSPProblem: def __init__(self, points): self.points = set(points) def random_solution(self): return TSPSolution(random.sample(self.points, len(self.points))) def random_greedy_solution(self): start_point = random.choice(list(self.points)) solution = [start_point] points_left = set(self.points) points_left.remove(start_point) while len(points_left) > 0: closest = min( points_left, key=lambda p: euclidean_distance(p, solution[-1]) ) solution.append(closest) points_left.remove(closest) return TSPSolution(solution) points = [(random.random(), random.random()) for _ in range(50)] tsp_problem = TSPProblem(points) plt.ion() fig, (ax, ax2) = plt.subplots(1,2) # fig2, ax2 = plt.subplots() (data_line,) = ax2.plot([], []) plt.subplots_adjust(bottom=0.15) ax.set_title("Traveling Salesman Demo", fontsize=20) ax.tick_params( which="both", bottom=False, labelbottom=False, left=False, labelleft=False ) plot = None text = None best = None tsp_solution = tsp_problem.random_solution() while True: x_points = [p[0] for p in tsp_solution.points] y_points = [p[1] for p in tsp_solution.points] length = tsp_solution.path_length() previous_line_data = data_line.get_data() xdata = list(previous_line_data[0]) ydata = list(previous_line_data[1]) xdata.append(len(xdata)) ydata.append(length) data_line.set_data(xdata, ydata) ax2.set_xlim((0, len(xdata))) ax2.set_ylim((0, max(ydata))) if plot is not None: plot.remove() (plot,) = ax.plot( x_points + [x_points[0]], y_points + [y_points[0]], color="blue", marker="s", markerfacecolor="black", markersize=3, ) props = dict(boxstyle="round", facecolor="blue", alpha=0.5) if text is not None: text.remove() if best is None or best > length: best = length text = ax.text( 0, -0.05, f"Best route length: {best}", transform=ax.transAxes, fontsize=14, verticalalignment="top", bbox=props, ) plt.pause(0.0001) # tsp_solution = min(tsp_solution.neighborhood(), key = lambda T: T.path_length()) tsp_solution = tsp_solution.steepest_ascent()