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Introduction

Example: Consider the idea of flipping a coin, i.e., consider {X;}22, € {0,1}. Define

“Everyone knows” that

This is exhibited by the simulation:

Convergence of the frequency of HEADs to the mean
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This is an intuition we have about the Laws of Large Numbers, which we need to make rigorous.

Similarly, the intuition we have about the Central Limit Theorem is that

1 Sh dis
\/ﬁ <n —,U) —t>N(OvO')a

which says that the distribution approaches a normal curve.
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Note: In this course, we’ll consider some other types of convergence, such as the Martingale Convergence

Theorem and Ergodicity.

Example: (random walks modulo N) Let X; € {—1,1}. Define

and set

This is exhibited by the simulation:

Random Walk (mod 20)
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Location of the walk
0.6

0.4

0.2

0.0

500 1000 1500 2000

Number of steps

Z,
We’re now interested in the quantity Wn These paths do not converge to a certain point, and so this does not

Z,
have the same kind of Law of Large Numbers as the previous example. In fact, = is “uniformly distributed”

in the intuitive sense. “Ergodicity” is the idea that a time-average is the same as a population-average
(looking at a walk far into the future is equivalent to looking at a lot of walks at an instant in time).
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Example: (Polya urn scheme) Start with an orange ball and a blue ball in an urn. Pull one out at random.
Whichever color you pick, take an outside ball of the same color and put them both in. Now there are three
balls, two of one color and one of the other. Repeat this process. We look at the proportion of balls which
are a certain color. As you can see, this simulations has a very different appearance:

Sample paths for the Polya urn scheme
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Number of draws from an urn

It turns out that this can converge to any point in [0, 1] (and does converge “almost surely”). These are also
called “reinforced random walks”, and it is an example of the Martingale Convergence Theorem.



Chapter 1

Chapter 1 - Sets and Events

Section 1.5 - Set Operations and Closure (The Rigorous Represen-
tation of Information)

Example: Let X € Q :={1,2,3,4,5,6} be the outcome of the roll of a fair die. There are two observers.
Observer A sees if the roll is even. Observer B sees if the roll has value < 2. Let & and 4% denote the sets
of all possible inferences based on the observations of A and B. In other words, &7 is the set of subsets of {2
for which we can know based on Observer A whether the roll is in the subset.

For starters, {1,2,3,4,5,6} € & and () € &, trivially. Also, we see that {2,4,6} € & and {1,3,5} € . By
contrast, {1} ¢ o7, because you can never tell whether the outcome is 1 just by asking Observer A. So

o ={0,{1,3,5},{2,4,6},Q}.

Similarly,

B =1{0,{1,2},{3,4,5,6},Q}.

We observe two general properties of such an “inference set”. Let () denote a set of possible outcomes and
let £ be a set of inferences. Then,

1 oeeé
(2) If E € €, then E¢ € €.

Now suppose that we have reports from A and B. For example, if A says TRUE and B says FALSE then we
can infer X € {4,6}. This shows us the properties:

(3) If By € £ and Fy € £, then E1 N Ey € £.
(3’) If F1 € £ and E5 € 5, then 1 U By € £.

Property (3’) comes from applying DeMorgan’s Law to Property (3).
Definition 1.5.2: A field is a non-empty class of subsets of Q which satisfies (1), (2), and (3’) above.
Definition 1.5.3: If a non-empty class of subsets of 2 satisfies (1), (2), and:

(30) : IfEieé’foriZLthenUEieg

i=1
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then we say it is a o-field.

Examples of o-fields:
(-) The power set: £ = P ().
(-) The trivial o-field: £ = {0, Q}.
(-) The countable / co-countable o-field: Let Q := R and define

£:={E CR: E is countable or E is countable}.

Example of a field which is not a o-field: Let Q = (0,1] and let o contain the empty set and all finite
unions of disjoint intervals of the form (a,b]. To prove this, we first need to verify that o is a field:

(i) By definition, ) € & and Q = (0,1] € .

(ii) Complementation within §:
(av b]c = (07 a] U (ba H

This also needs to be verifies for sets of finite unions, but we skip that here.

(iii) We will check that 7 is closed under finite intersections. Suppose 0 < a1 < az < land a; < by < by < 1.
Well, if as < by, then the intersection is empty, so this case is trivial. If a; < b; < ag < by, then the
intersection is (b1, as], which is in 7. If a; < by < by < ag, then the intersection is (by, bs], which is
also in /. Hence .« is closed under pairwise intersections, and therefore under finite intersections.

Lastly we show that &7 is not a o-field. Define

5=3:(3)

i=1

and consider the set

A= (0,51] U (82, 93] U (84, S5] U - - .

Then, A is a countable union of sets in <7, but is not a member of <.

Section 1.6 - The o-field Generated by a Given Class C

Example: In the leading example, we had Q = {1,2,3,4,5,6} with two observers A and B that know the
truth of X € A:={2,4,6} and X € B := {1, 2}, respectively. Then we get the o-field:

E=1{0,9,A,A° B,B°, AnB,AnB°, A° N B,A° N B, (AN B)°, (AN B%)“,(A° n B)“,(A° n BY)“}
={0,9,{2,4,6},{1,3,5},{1,2},{3,4,5,6}, {2}, {4,6}, {1}, {3,5},{1,2,4,6},{2,3,4,5,6},{1,2,3,5},{1,3,4,5,6}}

We call € the o-field generated by A and B. Notationally,

E=0(A,B).

Remark: If Q is finite, then o(C) can always be constructed by enumeration of intersections and
complements. However, this method is not possible when  is infinite. (In fact, it turns out the o-fields are
either finite or uncountable, and we certainly can’t enumerate an uncountable set!)

Corollary 1.6.1: The intersection of o-fields is a o-field.

Proof: Just check conditions.
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Definition 1.6.1: Let C be a collection of subsets of 2. The o-field generated by C, denoted o(C) is a o-field
satisfying:

(a) C Co(C)
(b) If &’ is some o-field containing C, then o(C) C &'

Remark: o(C) is sometimes called the minimal o-field containing C.

Proposition 1.6.1: Given a class C of subsets of €, there is a unique minimal o-field which contains C.

Proof: Let
N:={E|€isao-field and C C £}.

Since P(?) is a o-field containing C, X is nonempty. Now define
N# = () €.
£en

We claim that X% = o(C).

By Corollary 1.6.1, X¥ is a o-field itself. Furthermore, C C X#. To see minimality and uniqueness,
suppose &' is a o-field containing C. Since & € N, it follows that % C £’. O

Section 1.7 - Borel Sets on the Real Line

Definition: Suppose 2 := R and let C := {(a,b] | —0o < a < b < oo}. The Borel subsets of R are defined
to be

B(R) :=0(C)
It is worth noting that:
B(R) = o({(a,b) | 00 < a < b < oc})
=o({[a,b) | —o0 <a <b < o0}
=o({la,b] | —oo < a <b < o0}
— o({(~o0,a] | # € R})
o
o

closed subsets).

In general, if we consider a metric space S, then the Borel subsets of S are the collection
B(S) = o(open subsets of S).

Important examples: S = R? R>® C((0,1]).
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Chapter 2 - Probability Spaces

Section 2.1 - Basic Definitions and Properties

Definition: A probability space is a triple (2, B, P) where:
- Q) is the sample space,
- B is a o-field of subsets of 2,
- [P is a probabiliy measure,
where a probability measure is a function P : B — [0, 1] such that
(i) P(A) > 0 for all A € B,

(ii) P is o-additive, meaning if {A,, },en are disjoint events in B, then
P (U An> =Y P(4y),
n=1 n=1

(iii) P(Q) = 1.
Properties: We should verify the following properties:
(1) P(AY) =1 - P(A)
Proof: 1 =P(Q) =P(AU AY) = P(A) + P(A°)
(2) P(0®)=0
Proof: P()) =P(Q°)=1-P(Q)=1-1=0
(3) P(AUB) =P(A) + P(B) — P(AB)
Proof: P(A) = P(AB) + P(ABY) and P(B) = P(AB) + P(A®B). So,

P(AUB) = P(ABU (ABY) U (A°B)) = P(AB) + P(ABY) + P(A° B) = P(A) + P(B) — P(AB).

(4) Inclusion-Exclusion:

4,7 .5,k

P (O A]») =3 P(A) = > P(AA;) + > PAAAL) =+ (1) P(A1 Ay - Ay).
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(5) Monotonicity: For events A, B € B, it A C B, then P(A4) < P(B).

Proof: Observe P(B) = P(BA) + P(BA®) = P(A) + P(BAY), since BA = A. Since all
probabilities are non-negative, P(B) > P(A).

(6) Subadditivity:

o0 oo
P < An> <Y P(4,)
n=1 n=1
Proof: Follows from monotonicity.

(7) Continuity: If {A,},en is a monotone increasing sequence of events in B, i.e.,
A1 C A CA3C -
and there exists A such that A, /' A, then

lim P(A,) = P(A).

n—oo

Proof: Define By := Ay, By := Ay Ay, ..., By := A ~ Ag_1, etc. These are disjoint events
whose union is A. So,

P(A) =P (G Bn>

=Y P(B,)
" N

= m, 2, ()

N
e (Us)

n=1

N—oc0

(8) Fatou’s Lemma:

P (lim inf An) <liminf P(A,) < limsupP(4,) <P (lim sup An)

n—00 n—0o0 n—o00 n—o00

Each inequality can be strict. For example, pick © := (—1,1) and pick X}, to be drawn “uniformly”
between —1 and 1. Define Ao be the event that Xor € (0,1) and let Agkiq be the event that
Xok+1 € (—1,0). It follows that

liminf 4,, = Ej ﬁ A, = 0.

n—o00
n=1k=n

So,
i <lim inf An> = P(0) = 0.

n—roo

1
On the other hand, P(4,) = 3 for all n. So,

1
0=P (hm inf An> < liminf P(4,) = 5

n—oo n—oo

and the inequality is strict.

Now we prove Fatou’s Lemma:
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Proof:

P (liminf 4,) =P <G ﬁ Ak> -P (nli_{réo ﬁ Ak> .

n=1k=n =n

Observe that -
Bn = ﬂ Ak
k=n

is a monotone increasing sequene of sets (since we are intersecting over fewer sets). So, by
continuity (7), we have

P (nlgr;o kﬂ Ak> = lim P (kﬂ Ak> < lim inf P(A,)

where in the last step we use the fact that

(] Ak C 4, O
k=n
(9) If A,, — A, then li_>m P(A,) = P(A). (This is like (7) without the requirement of monotonicity.)
n o
Proof: If A,, — A then by the definition of “limit”

limsup A,, = liminf A4, = A.
n—oo n—oo

By Fatou’s Lemma,

P(A) =P (linrg inf An)

<liminfP(A,)
n—oo

<limsupP(A4,)

n—oo

<P (lim sup An> =P(A4).

n—oo

Hence there is equality throughout, and so

lim P(4,) = P(4). O

n—oo

Example 2.1.2: (The Graduates and their Caps) A bunch of students are graduating and they all throw
their caps in the air. An instantaneous tornado mixes them all up and each student catches a cap. What is
the probability that every student ends up with a cap which is not their own?

Label the students (and their caps) from 1 through n. When each student picks up a cap, they look at the
label. This induces a permutation on the set [n]. So,

Q={(z1,22,...,2,) | z; €{1,...,n} and x; # z;, if i # j} = {permutations of [n]}.
The o-field generated by 2 is B := P (). For any (z1,%2,...,2Zn) € £, set
P((x1,xa,...,2,)) = —
and corresponding for a set B € B in the o-field, we set

1
P(B) := - (the number of elements of B).
n!
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We have now defined our probability space (2, B, P).

Define A; C Q to be all events where x; = i. The event that at least one student picks up their own cap is

We use inclusion-exclusion to see that

PA) =>4 > Adi+ Y AAA -+ (C)TR(A Ay Ay).
=1

1<i<j<n 1<i<j<k<n
It is clear that for all i,
(n—=1)! 1
(4:) n! n
So,
n\ (n—1)! n\ (n —2)! n\ (n —3)! n\ 1
P(A) = - — e (=1t —
(4) (1> n! (2> n! * 3 n! =D n) n!
11 (—1)"
Sty ot
Recall that
2 3
€ =1da+ ot gyt

and so
P(A)~1—e ' =~0632...

for n large. So, the probability that no one catches their cap is approximately

I-(1—etH=el.

Definition: Let 2 :=R. Suppose P is a probability measure on B(R). Define F(x) by
F(z) = P((—o0,])

for all x € R. This is a distribution function.

Lemma: Let F' be as above. Then,
(i) F is right-continuous.
(ii) F' is monotone increasing.
(iii) F has limits at too:
F(o0) := Ilgr;o F(x)=1,
F(—o00) := 0.
Proof of (i): Let € R and suppose that {x,,} C R such that =, \ z. Then,

F(z) = P((—oc,])

- ()

n=1

lim P((—o0,x,))

n—oo

lim F(z,). O

n—oo
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Section 2.2 - More on Closure

We want to develop the mathematical tools to prove things such as the following corollary.

Corollary 2.2.2: Let 2 := R. Let P; and P; be two probability measures on (R, B(R)) such their cumulative
distribution functions (cdfs) are equal, i.e.,

Ve e R: Fi(x) := Py ((—o0,z]) = Pa((—00, z]) =: Fo(z).
Then, P; = Py on B(R).
Remark: To borrow language from Chapter 1, the probability measures P; and Py are “closures” of the
information contained in their respective cdfs. We need to generalize the notion of closure for certain

mathematical “structures” (defined to be a collection of subsets of Q) satisfying some closure axioms).
Examples of some structures: o-fields, o-rings, monotone class, 7w-systems, \-systems.

Definition 2.2.1: The minimal structure S generated by a class C is a nonempty structure satisfying:

Gccs,

(ii) If &’ is another structure containing C, then § C §'.

Proposition 2.2.1: The minimal structure S(C) generated by a class C in € exists and is unique.

Proof: Define X := {G | G is a structure and C C G}. Then, define

S =[G,

GeR

This requires our “minimal structure” to be closed under infinite intersections. [J
Definition: A m-system is a class P which is closed under finite intersections.

Definition: A A-system is a class .Z of subsets of ) satisfying:
()‘1) Qe sza
(A2) If A € % then A € .2,

(A3) If {A,,}22, is a sequence of mutually disjoint sets in .Z, then U A, e Z.

n=1

Remark: Every o-field is a A-system, but not vice versa.

Theorem 2.2.2: (Dynkin’s 7-A Theorem)
(a) If P is a m-system and & is a A-system containing P, then o(P) C Z.
(b) If P is a mw-system, then o(P) = Z(P).

We will prove Dynkin’s Theorem later. For now, we will prove a proposition and some corollaries.
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Proposition 2.2.3: Let P; and P, be two probability measures on (£2,8). The class
&= {A € B| Py(4) = Py(A)}
is a A-system.
Proof: We verify each of the properties:
(M) P1(Q) =P3(2) =1, and so Q € Z.
(X\2) Suppose A € Z. Then,

P(AY) =1 —P1(A) = 1 - Py(A4) = Py(AY).

(A3) Suppose {A;} is a mutually disjoint sequence in .Z. Then,

P (J4y) = SBI(4) = Y Pa(4)) = B, (U4)

Hence . is a A-system. [J

Corollary 2.2.1: If P; and Py are probability measures on (2, 8) and if P C B is a w-system such that for
all A € P we have P1(A) = Py(A), then
VB € U(P) : Pl(B) = PQ(B)
Proof: From Proposition 2.2.3, £ := {A € B | P1(4) = P2(A)} is a A-system. Furthermore,
P C 4. By Dynkin’s Theorem, o(P) C £, which proves the statement. [

Corollary 2.2.2: If Fy(x) = Fy(x) for all x € R, then P; = P on B(R). Fi(z) and Fz(x) are defined as in
the lemma preceding this section.

Proof: Define P := {(—o0,z] | z € R}. Then P is a m-system since
(=00, 2] U (—00,y] = (—00, min(z,y)] € P.

Recall also that o(P) = B(R). So, using Corollary 2.2.1, B(R) C . C B(R) (where .Z is defined as
in the previous corollary), and so .Z = B(R), i.e.,

P1(A4) = Py (4)

for all A € B(R). O

Proposition 2.2.4: A class .Z that is both a m-system and a A-system is a o-field.

Proof: By (\1), Q € Z. Suppose that A € L. By (\2), AY € Z. Suppose that {4;}i=3° C .Z. We
want to show that the infinite union of the A; is an element of .. Define

BlizAl, BQZZAQQAIC, B3Z=A3ﬂAloﬂAg, ceey Bn:AnﬂAfﬂﬂAg_l,

In general, B,, € £ only if .Z is a m-system, which we assumed it is. So, the union of the A; equals
the union of the B;, which is now a disjoint union. So, .Z is closed under arbitrary unions. Therefore,
£ is a o-field. O

Now we will prove Dynkin’s w-A Theorem. We restate it first.
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Theorem 2.2.2: (Dynkin’s 7-A Theorem)
(a) If P is a w-system and .Z is a A-system containing P, then o(P) C Z.
(b) If P is a w-system, then o(P) = Z(P).

Proof of (a): Let Z(P) be the A-system generated by P. By minimality,
PCZ(P)C .

Now suppose for a moment that .£(P) is also a w-system. Then, by Proposition 2.2.4, Z(P) is a
o-field. By minimality of o(P), we have the chain

PCo(P)CZ(P)CZ.
This would give the result. So it remains to show that Z(P) is also a m-system.
Given A C (), define
Ly ={BCQ|ANBe Z(P)}.
Claim 1: If A € Z(P), then Z4 is a A-system.

Proof: Since A € Z(P), by hypothesis it follows that QN A = A € Z(P). Therefore,
Q € Z4 and so (A1) is verified. Next, suppose B € Z4. We need to show that B¢ € 24, i.e.,
BN A e Z(P). So, we need to rewrite this as the complement of a disjoint union of sets in
Z(P). Clearly

B°NA=(A°U(ANB))° € Z(P).

So, (A2) is verified. To show (A3), assume that {B;};cn is a disjoint sequence of sets. Then,

AN (UBi> =JAnB)e2(P)

because AN BY is also the union of disjoint sets of .Z(P). So, this claim is proved and .Z, is a
A-system in the case where A € Z(P). O

Claim 2: If A € P, then Z(P) C Z4.

Proof: Since A € P C Z(P), then £, is a A-system. By minimality (since .£4 O P because
P is a w-system), L (P) C L. O

Remark: Suppose A € P and B € Z(P). Then since B € Z(P) C Z4, we have that ANB € Z(P).

Claim 3: If A € Z(P), then Z(P) C Za.

Proof: First, suppose B € P. Then by the previous remark, AN B € Z(P). Therefore
P C Z4. But from Claim 1, %4 is a A-system. By minimality, £ (P) C Za.

If Ae Z(P)and B € Z(P), then B € .£4. By definition of Z4, AN B € £(P). Hence, £(P) is a
m-system. This completes part (a) of the theorem. [

Proof of (b): Since P is a m-system contained in the A-system Z(P), part (a) implies
o(P) C Z(P).

On the other hand, every o-field is a A-system. Therefore o(P) is a A-system by minimality. So,
Z(P) Ca(P).

Hence,

Z(P)=o(P). O
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Section 2.4 - Construction of Probability Spaces

Definition 2.4.1: A class S of subsets of 2 is a semialgebra if the following hold:
(i) 0,2e S
(ii) S is a w-system

(iii) If A € S, then there exists some finite collection of disjoint C1,Cs,...,C, € S such that

n

n n
Remark: For the disjoint union, rather than the conventional notation |_|, Resnick uses the notation Z

i=1 i=1

Note: AC is not necessarily in S, since S is not assumed to be a A-system.

Example: Let © := R and define S; := {(a,b] | —o0o < a <b < co}. Then,
(i) 0,2 € &
(ii) Suppose I1, I € S;. Then it’s clear that I; NIy € Sy.
(iii) Suppose I = (a,b] € S;. Then,
I¢ = (=00, a] U (b, o0].

Remark: Note that S; is not closed under complements, since I¢ ¢ S;.

Example: Let Q := R¥ = {(x1,22,...,2%) | z; € R}. Define Sy to be the set of all rectangles, i.e., sets of
the form
A=1I1 x Iy x -+ x Ij.

Then, S is a semialgebra.

Lemma 2.4.1: (the field generated by a semialgebra) Suppose S is a semialgebra of subsets of . Then, the
smallest field containing S, denoted 27 (S) can also be written

(m&z{U&|I<msms} (+)
el
Proof: Define
A:{U&|H<w5ﬁ8}
i€l

We first show that S C A. Note that for any S € S, we have that S € A by taking I := {1} and
Sy :={S}. Now show that A is a field.

(i) Since Q2 € S by definition of semialgebra, we have 2 € A.

(ii) Suppose |_|S¢ € A and |_| S € A. We need to show that their intersection is also contained in

i J
A. Note

! !/
(U&)ﬂ ]85 ] =L ]sinsy).
i J i,
(You may need to think about it a bit to see that this is indeed a disjoint union.) Now, each
S;nN S; € S since semialgebras are mw-systems.
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(iii) Suppose |_| S; € A, then

c
<U&> = s¢.
Each S can be written as

S¢ =[S
ik

for some collection S;,. Since A is closed under finite intersections, we have

OA&)CGA

This shows that A is a field containing S, and so «7(S) C A. To see the reverse, note that each element
is a (disjoint) finite union of elements of S, and <7 (S) contains these elements of S and is closed under
finite unions, and so A C &7(S). So, we have shown equality. [

Theorem 2.4.1: (First Extension Theorem) Suppose S is a semialgebra of subsets of Q and P : S — [0, 1]
is o-additive on S and satisfies P(Q) = 1. Then, there exists a unique extension P’ of P to <7 (S) defined by

which is a probability measure on &7 (S).

Proof: First we show uniqueness of the extension. Suppose that A € &/(S) has two distinct
representations,

A=[]si=|]s;

i J

We must confirm that

Y P(S) =) P(S)).

i J
Indeed,
Y P(S) =) P(S;nA)

i

mrfee()

-y r(Usins)

J

Now, since S is a m-system, S; N S; € S. So, by the additivity of P,

Z})U@m@ :ZXP@m%:ngy

J J

The last equality is shown by reversing the logic.

Next, we need to show that P’ is o-additive on &/(S). Suppose
A=||4iew(5)

i=1
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and that for each A;,
A= |_| Sij € A(S)

Jj€Ji
where |J;| < co and S; ; € S. Since A € &7(S), there must be some finite representation
A= || S
keK
where |K| < oo and S, € S. By the definition of P/,
Pl(A) =) P(S).
keK

But,
Se=8nA=||[SenA]=]]|][SenSil

i=1 i=1j€eJ;

Since S is a m-system, S N .S; ; € S. Separately, we know that Si, € S. Since P is o-additive,
P(Sk)=>_> P(SknSi)
i=1jeJ;

and so

Thus, P’ is o-additive. O

Theorem 2.4.2: (Second Extension Theorem) A probability measure P defined on a field < of subsets of
 has a unique extension to a probability measure on o ().

Remark: See book for proof.

Theorem 2.4.3: (Combo Extension Theorem) Suppose S is a semialgebra of subsets of € and that
P is a g-additive set function mapping S into [0,1] such that P(Q) = 1. Then, there exists a unique
probability measure on ¢(.5) that extends P.

Remark: This combines the first and second extension theorems. We are responsible for being able
to state this theorem on a test, while defining each of the underlined terms in the process.
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Section 2.5 - Measure Constructions

Construction: To define the Lebesgue Measure on (0, 1], take  := (0,1]. Let B be the Borel sets on (0, 1]
and S = {(a,b] | 0 < a < b <1} (we showed already that S is a semialgebra and that o(S) = B). Define
A:S —1[0,1] by A(#) =0 and A((a,b]) =b—a for b > a.

The only thing left to be shown is o-additivity on S. For finite additivity, let (a,b] € S be written by a finite
disjoint union of S, i.e.,
k
(a,b] = Ll(ai’bi]‘

i=1

Then (with some possible renumbering), a; = b;—1 for all 2 < i < k. Well,
P((a,b])) =b—a

by definition, but now we have

k k
P(Ll(m,ln]) :Zbi*ai =b,—a1=b—a.
i=1

i=1

So we have shown finite additivity. See the book for the o-additive part.
Remark: How do we draw from arbitrary probability distributions from uniform random variables?

Example: We now discuss generating exponential random variables: P(X > x) = e~**  where A > 0 and
x > 0. Then, the cdf is

F(z) =P(X <z)=1—e77,

"IN

L

L 4

A
L 2

We claim that if u ~ Unif(0, 1) then F~!(u) ~ Exp()). Indeed,

P(X >2) =P(F *(u) > )
=P(U > F(x))
=1- F(x).

Example: Now we look at discrete random variables. Let X be the time of the first successful trial and let
p € [0, 1] be the probability of success. Then,

P(X=k)=(1-p)*'p

for k > 1.
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We get the density function:

9---9
81fp---- -~
29| crecioeo--@
TTTTNTTTT T
____'|____T____l'____l____.
————— e e e i e LI ]
SIIIVIIIICIIINIIIINIIIINIIIINIII® e
ST TIIIAIIIINIIIIVIIIOIIIINIIIINIICINIII® o
A 1 2 3 4 5 6 7 8 9 10
The corresponding cdf:
271 - - - *—o0 !
19 """"" ._(b 1 1
1f---e—0 1
( ‘ 1 1 1 |>
1 2 3 4 5

Construction: Now we construct a probability measure from a cumulative distribution function . Let F(x)
be a cdf. Define
Pr((—o0,x]) := F(z).

Define the left-continuous inverse of F' by
F~(y) == inf{z | F(z) > y}
and define
Aly) == Az | F(z) 2 y}.

Suppose A € B(R). Then, let
Er(A) =={ue (0,1]| F~(u) € A}.

By Lemma 2.5.1, if A € B(R), then £r(A4) € B((0,1]).
The complete definition of Pp is given by Pp := X o £ with

A= MEr(A)).
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Chapter 3 - Random Variables

Section 3.0 - Motivation for Random Variables

Colloquially, what is a random variable? It’s a characterization of a random outcome (as opposed to a cold
census).

Example: (Yahtzee!) A 5-of-a-kind when rolling fair dice is called a “Yahtzee!”. We will construct a random
variable for this event. Our universe of rolls is

Q:={1,2,3,4,5,6}°.
We write a roll w € Q as w = (w1, wa, w3, ws, ws). We define

B :=P(Q)

1
and define P on Q by P(w) = & for all w € 2. Now we define the random variable:
Vo 1, if wy =wy = w3z = ws = ws
"1 0, otherwise

Let E be the event {Y = 1}. Then,

1
P(E) = (# of ways to Yahtzee!) - (probability each happens) = 6 - s

Now suppose that there are two observers with restricted points of view:
- Observer A can only see how many of the dice are odd.
- Observer B can only check to see if pairs of dice have equal value.

Observer B can determine the value of Y, but A will not necessarily be able to (A may be able to rule out a
Yahtzee in some circumstances).

In the context of Chapter 2, 0(B) & B, 0(A) & B and both o(B) G 0(A) and 0(A) G o(B).

These statements motivate a desire to want to write something like
p(Y) Ca(B), but p(Y)Z o(A)
where p is some structure generated by knowledge of Y.

19
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Section 3.1 - Inverse Maps

Definition: Suppose 2, R are two sets. (R will almost always be R and is always a “range” of a function.)
Let X : Q@ — R. Then, X determines an inverse set function

X1 P(R) = P(Q)

defined by
X HA) ={weQ| X(w) € A}.

Proposition 3.1.1: If B is a o-field of subsets of R, then X ~1(B) is also a o-field.
Proof: We verify the three properties.

(i) Note that R € B and also X ~!(R) = Q. Hence, 2 € X~1(B). Also, § € B and X~ 1()) = 0 by
definition. Hence, § € X ~1(B).

(ii) Suppose A € B. This means that A° € B as well. This implies that both
X 'A)ex (B and X 'A% eX'(B).
Now

(XHA) ={we | X(w) € A}
={weQ|X(w)e A°}
= X1(A% e Xx71(B).

(iii) Suppose that {A, }nen is a sequence in B. Then, | J A,, € B since B is a o-field. Now observe

Definition: U X 1A, ={we Q| X(w) € A, for some n}

neN
= {weQ

=Xx! (U An> €B.

neN

X(w) € U An}

neN

Hence X ~1(B) is a o-field. J

Proposition 3.1.2: If C is a class of subsets of R, then
X7Ho(C) = a(X7HC)).

Proof: From Proposition 3.1.1 we have that X ~!(c(C)) is a o-field. Note that since C C o(C), we
have

X71C) € X1 (a(C)).

Therefore, by minimality,

a(X1(C)) € X~ (a(C))}-
To show the reverse inclusion, define
F={AeP(R)| X HA) € a(X ).

We claim that F is a o-field. See the textbook or lecture notes for the proof of this claim.
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By definition, X ~1(F) C o(X~1(C)). Furthermore C C F and so X }(C) C X !(F). Because F is a
o-field, o(C) C F. Hence by minimality,

XHo(C)) € X HF) Ca(XH(C)).
This completes the proof. [

Section 3.2 - Measurable Maps and Random Elements

Definition: If (Q, F) and (R, B) are measure spaces and X : Q — R, we say that X is F-measurable if
XYB)CF.

In the special case where (R, B) is R with the Borel sets, then we say that X is a random variable.

Definition: Let (2, F,P) be a probability space and suppose X is F-measurable. For a set A € R, we define
XA =X"1A)={wecQ|X(w)c A}

Define the set function

(PoXH(A) :=P(X1(A)).
Then, Po X ~! is a probability measure on (R, B) and is called the probability measure induced by X, or the
distribution of X

Remark: To verify that this is a probability measure, we check:
(a) (Po X~1)(R) = P(X"1(R)) = B(Q) = 1.
(b) (Po X1 (A) >0 for all A € B since P(E) >0 for all E € F.
(c) Suppose that {A, }nen is disjoint and in B. Then,

(PoX™1) <|_| An> -

(o)
)

)

PoXx!

P (X‘l HE
P <|_| X1(4,)
ilIP’(X‘l(An)
i( )(An).
Notation: We often write (Po X~1)(A) = P[X € 4] or P{X € A}.

Example: (Yahtzee!) In the context of our earlier example using the game of Yahtzee!, we can write:

Py =1] =P(Y~'({1}))
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1

Meanwhile, P[Y =0] =1 — i

The range measure space “(R,B,P)” is

({0,13,{0, {1}, {0},{0,1}},Po Y1)

Proposition 3.2.1: (Test for Measurability) Suppose X : Q@ — R where (Q,F) and (R, B) are measure
spaces. Let C be a class such that ¢(C) = B. Then,

[X is F-measurable] <= [X'(C) C F].

Proof:

(<=) Suppose X ~!(C) C F. Then by minimality, o(X ~!(C)) C F. However, X 1(c(C)) = X }(B)
since we assume that o(C) = B. Also, we proved that X ~!(¢(C)) = (X ~1(C)) in Proposition
3.1.2. Hence

(=) Suppose X is F-measurable, i.e., X }(B) C F. Since C C B, we have

X locx B CcF. O
Corollary 3.2.1: X : Q — R is F-measurable if X 1 ((—o0,z]) = [X < z] € F.

Example: (Yahtzee! with two dice) We have
Q={w=(w1,ws) |w; € {1,2,3,4,5,6}}.
Define the random variable
Y .— { O, ifw1 = Wy

1, otherwise

Observer E knows the number of even dice, so F € {0,1,2}. F itself is a random variable. Then, we can
define the o-field generated by E as

o(E) = o(E~(P({0,1,2})))
=o({E7' ({0}, ET'{1), BT ({2h)})

Now, we calculate these sets:

E7H({0}) = {(1,1).(1,3),(1,5),(3,1),(3,3).(3,5), (5, 1), (5,3), (5,5)},

BTN ({1}) ={(2,1),(1,2),(2,3),(3,2),(2,5), (5,2), (4,1), (1,4), (4,3),
(3,4),(4,5),(5,4),(6,1),(1,6), (6,3), (3,6), (6,5), (5,6)},

E7N({2}) = {(2,2).(2,4),(2,6), (4,2), (4,4), (4,6),(6,2), (6,4), (6,6)}

The intersections of each pair of these is empty. Hence,

o(B) = o(B7'(P({0,1,2})) = {0, BT ({0}), BT ({1}), B~ ({2}), BT ({0)) < ETH({1H 7, BT ({27, ).
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Proposition 3.2.6: Let X7, X5, ... be random variables defined in (£, F). Then,

(i) inf X,, and sup X,, are random variables.
neN neN

Proof: First note that
[sup X,, < z] = {w € Q| sup X, (w) < z}
= ﬂ{w €eN| Xp(w) <z}

This is a countable intersection of sets in the o-field F, and hence the intersection itself is in F.
Therefore,
[sup X, < z] € F.

The proof for the infimum is analogous. [

(ii) lim inf X,, and lim sup X,, are random variables.
n—00 n—00

Proof: liminf X,, = sup <inf Xn). O
n—o00 nen \kE2n

(iii) If lim X, (w) exists for all w € €2, then lim X, is a random variable.

n— oo n— oo

Proof: If lim X, (w) exists, then lim X, (w) = liminf X, (w). O

R0 n-»00 n—o0
(iv) The set on which {X,,} has a limit is F-measurable, i.e.,
{w] nh_)rréo Xp(w) exists} € F.
Proof: Let Q be the set of all rationals. Then,

{w] li_>m X, (w) exists}¢ = {w | liminf X,, < limsup X,,}
n o0 n— oo

n—oo

= U {liminf X, <r< 1imsuan]
n—oo

TEQ n—oo
= U <[limiann < 7‘] N {limsuan > r}) . g
n—00 n— o0

reQ
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Chapter 4 - Independence

Section 4.0 - Motivation for Independence

The motivation for the definition of independence comes from conditional probabilities, i.e., the formula

P(AN B)

PA|B) = —55

The intuitive notion of independence says that if A is independent of B, then the probability of A happening
in the B-universe should be equal to the probability of A happening in the Q-universe, i.e.,

P(AN B)

=BA|B) = —5

b
Cross-multiplying, we see that if this occurs, then

P(AN B) = P(A)P(B).

Section 4.1 - Basic Definitions

Definition 4.1.2: Suppose (2, F,P) is a probability space. The events Ay,..., A, € F are defined to be
independent if

P (ﬂ AZ-> =[P4

el i€l

for all finite I C {1,...,n}. Note that this is actually

i(Z):zn—n—1

k=2

equations to check, all collections of 2 or more elements of F.

24
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Theorem 4.1.1: (Basic Criterion) If for each ¢ € [n], C; is a class of events satisfying
(i) C; is a m-system,
(i) {C;}™, is independent,

then o(Cy),...,0(Cy,) are independent.

Remark: A set of classes is considered to be independent if for any choices {A; € C;}, we have that
the events {A;} are independent.

Proof: We show the n = 2 case. Fix an event A, € Cy and define
L ={AcF|P(ANAy) = P(A)P(Az)}.
We now show that % is a A-system.

(A2) Suppose A € Z. Then,
—P((AN Ay) U AS)

( )
P(AN Ay) +P(AS))
(A)P(As) +1 —P(As)) (since A € )

Hence A® € 2.
(A3) Suppose By, ..., B, € F are disjoint. Then.

((v)n -+l

=Y P(B;N A)
= Z P(B;)P(A4)

=P <|_| BZ-> P(A).

Hence .Z is a A-system. Note that C; C .Z. Therefore, 0(C1) C &, i.e., 0(C1), A2 are independent.
Since As was arbitrary, ¢(C1),Cy are independent. Reversing the entire argument, A;,c(Cs) are
independent for all 4; € ¢(C;). Combining, we get o(C1),0(Cz) are independent.

Proceed by induction to prove cases where n > 2. [J

Definition 4.1.4: Let T be an arbitrary index set. The classes {C; }+c7 are independent families if for each
finite I C T, the set {C;}+er is independent.

Corollary 4.1.1: If {C; };cr are nonempty m-systems that are independent, then {¢(C;)}+er are independent.

Proof: Proceed as in the above theorem. [
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Section 4.2 - Independent Random Variables

Definition 4.2.1: {X;};cr is an independent family of random variables if {o(X;)}ier are independent o-
fields. Recall that o(X;) = o(X " *(B(R))) where X : (2, F) — (R, B(R)).

Remark: An important concept related to this section is finite dimensional distributions:
FJ ({It}tET) = P{Xf S Tt Vt € J}

for all finite subsets J C T

Theorem 4.2.1: (Factorization Condition) A family of random variables { X; }+cr is independent if and only
if for all finite J C T
Fy ({ziher) = [ PAX: <} (%)

teJ

for all z; € R.

Proof: By Definition 4.1.4, it suffices to show for finite index sets J that {X;}:c; is independent if
and only if (3 ) holds. Define

C={{weQ| Xy(w) <z} |zeR} ={X, <az]|zeR}
(i) We claim that C; is a m-system:

[X: <z]N[X; <y] =[X¢ <min({z,y})] € C;.

ii) Additionally, o(C;) = o(X4).

%) is sufficient to imply that {C;}+cs is an independent family. By the “Basic Criterion” in Theorem
4.1.1, {o(C¢) }tes is independent. O

Corollary: A finite collection of random variables {X;}¥_, is independent if and only if

k
P{X) <z, Xo <, -+, Xp <y} = [[P{X: < il

=1

Section 4.3 - Ranks, Records, Renyi’s Theorem

Let {X,}n>1 be iid with a common continuous cdf F'(z).
Lemma: There can be no ties (almost surely), where
{ties} = U{XZ = X]}
i#]
Proof: By subadditivity:
P{X; = X for some 7,5} < Z]P’{Xi =X;}=0.
i#]

We will show the equality with zero above momentarily, which will then complete the theorem. [J
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Definition: Call X,, a record if

X, > max X;.
i€[n—1]

Warnings: As always, there are hidden w’s. The correct interpretation is

1, Xp(w)> Xi(w) Vi€ n—1]
An(w) = { 0, otherwise

This is the official definition associated with Resnick’s “A,, = {X,, is a record}”.

Remark: Renyi’s first result says that:

1
Furthermore, the family {4, },>1 is independent. This is a slightly surprising result. For example, the fact
that the 10*" draw was a record has no bearing on whether or not the 11** draw will be a record. We will

prove this shortly.

Lemma: Suppose that X; and X5 are independent with a common continuous cumulative distribution
function F'. Then,
P{X; = X} =0.
Proof: We start by relaxing the exact equality and bounding the probability above by the probability

of landing in the same partition of width —

2n°
- k—1 kook—1 k
P{Xlin}Sk; P{QH<X1§2”, 2,1<X2§2n}
- k k—1 k k—1
-2 [l () - GG -+ (5]
k=—o00
k k—1 — k k-1
< F|{—)-F . F|—)-F
<pplr () -7 (5)] 2 [ () - (5]
k=—oc0
k k—1
= sup [F () - F ( )} (telescoping sum)
ke 2n 2n
. k E—1\]. . . .
Demanding that sup | F o |~ F )| 38 bounded for all n is equivalent to the condition that F
keZ
is uniformly continuous on R. Recall that a function which is continuous on a compact set is uniformly

continuous.

Claim: Suppose f € C([0,00)) and lim f(z) = L < co exists. Then, f € UC([0, o).

Tr—00

Proof: Say that |z —y| < 1, for convenience. Because lim f(x) = L, there exists M such that
T—r00

for all = > M, |f(z) — L| < ¢/2. So, for all 2,y > M, |f(z) - (4)| < |f(x) — LI+ |L - f(y)| < e
Otherwise, x,y € [0, M +1], and since this is compact the function is uniformly continuous here.
O

Since F' is continuous on (—oo,c0) and hlil F(z) each exist, we have that F' € UC((—o0, 0)), i.e.,
T—>T 00

1
given € > 0, there exists n such that for all |z — y| < TE |F(z) — F(y)| <e.

So, for any € > 0, P{X; = X5} < ¢, ie,, P{X; = X2} =0. O
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Notation: Suppose X, Xo,... are iid random variables with common continuous cdf. For each n, let R,
be the relative rank of X,, among {X1,..., X}, i.e,

n
R, = Z Tix,>x)
i=1
so that R, =1 if X, is a record.

Theorem 4.3.1: (Renyi’s Theorem) The sequence of random variables {R,, },,>1 is independent, and
PR, = k} = »
n - - n

for all k € [n].

Proof: For (almost) all w € €2, note that there are n! orderings of {X;(w)}?_,. Because the values are

iid, all orderings occur with the same probability: - (Remember, there are no ties, almost surely!)
n!
Each realization Ry, ..., R, uniquely determines an ordering. For example, if for w; we have
Rl(wl) =1 Rg(wl) =1 Rg(wl) =1

then we have
Xl(wl) < Xg(wl) < Xg(wl).

If for we we have
Rl(wg) =1 R2<w2> =2 Rg(bdg) =3

then we have
Xl(WQ) > X2(W2) > Xg((,L}Q).

1
Of course, each ordering has probability — So, for any sequence (ry,...,r,), where r; € [i], the
n!
probability that
1
]P{Rl :7’1,R2 =T, aRn :Tn} - Y
n!
Now fix n. We will compute P{R,, = r,}.
P{anrn}: Z P{Rlzrl,R2:r2,~~ ,Rn:rn}
T1,72, ", Tn—1
B 1
= X
T1,72, 3 Tn—1
1
= —1)!. =
=(n—1)! p
1
n

Show the general argument with induction. O

Example: (Independence / Dyadic Expansions of Uniform Real Numbers) Define (Q2, F,P) = ((0, 1], B((0,1]), A)
where A is the Lebesgue measure. For a given w € €2, write

0= (@) = 0.ds ()da(w)ds () -
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where each d;(w) € {0,1}. Note that with this representation

=1
1:22—”:0.1111~-,
n=1

and

%:0.1 =0.01111---.

To overcome this, we only consider nonterminating sequences.
Fact 1: Each d,, is a random variable.

We need to show that the sets {d,, = 0} and the set {d,, = 1} are both in B((0,1]). (Recall,
{d, =0} ={w € Q| d,(w) = 0}.) Since they are complements, we only need to show this for
one of them. Observe that

{di =1} ={w e (0,1][di(w) =1}

(The inequality is strict because we’re ignoring

N —

i.e., w has the form w = 0.1dsdsdy--- >

terminating sequences.) So

(di =1} = @ 1} € B((0,1).

Similarly, {dy = 1} consists of w of the form 0.dy1dsdy - - -, i.e.,
11 3
=1}t=(-,= -1 1]).
2 =1) = (53] v (3] e o)

We see now that for arbitrary n, the set {d, = 1} is measurable. This proves the fact.

1
Fact 2: For all n, P{d, =1} = A\{w € Q| d,(w) = 1}) = 3 So, the d,, are identically distributed.

Fact 3: {d,},>1 is an independent sequence.

It suffices to show independence for {d;}?_,. We need to calculate

ST

i=1

n
for a given vector u = (uy,us,...,u,) € {0,1}". Note that saying w € ﬂ{di = u,;} means that
i=1
w has the form

w=0.ugug - Updpt1dpto -+ € (0uqug - u,0000- -, Ouqug -+ upllll--+)
.. . 1
and this interval has size o

1
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Section 4.5 - Independence, Zero-One Laws, Borel-Cantelli Lemma

Borel-Cantelli Lemma: Let {A,},>1 be a sequence of events in F. If Z P{A,} < oo, then

n=1

P{A, i.0.} = P{limsup 4, } = 0.

n—oQ

Proof: Recall that using ws, we are showing

P{w € A, i.0.} =P{w € limsup A4,,} = 0.

n—oo

We know that

P{A, i.0.} =P{w e nh_)néo L>J A;} (by definition)
Jj=zn
= nl;r& P{ L>J Aj} (by continuity of P)
Jj=zn

< Jiw, > P(4))
Jj=n

We claim this sum is zero. Since Z]P’{Aj} < o0, for all € > 0 there exists N such that for all n > N,
j=1

D> P(4;) <e O
Jj=n

Example: Suppose {X,,},>1 is a sequence of Bernoulli random variables where p,, := P{X,, = 1} satisfies
an < 0o. Then, P{ lim X,, =0} =1.

n—oo
n=1

Proof:

liminf{X,, = 0} =liminf{w € Q | X,,(w) = 0}

n—oo n— oo
={weQ| X,(w) =110}
= {w € Q| AN, such that Vn > N, X,,(w) = 0}
={w] 1i_>m Xn(w) =0}.

Borel Zero-One Laws: If {A,},>1 is a sequence of independent events, then

0, > P{A,} <o
P{A, i.0.} = not

1, i]P’{An} =00

n=1

Proof: By the Borel-Cantelli Lemma, if Z P{A,} < oo, then P{A4,, i.0.} = 0.

n=1
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Conversely, suppose Z P{A,} = co. Well,

n=1
P{A, i.0.} =P{w | w € limsup 4,, }
n—oo
=1- P{lirginf A%} (we are leaving out the ws now)

_ 1 _ : C
=1-P n11—>11;loﬂAk

k>n
=1—lm P ﬂ AY (since the measure is finite)
nee k>n

m
11 . C
-t nlgﬂgoﬁ”{r}ﬂnmﬂf‘k}

k=n
1T . C
-t JLH;AE%OP{ N Ak}
k=n
1T . C .
=1 nl;rrgo n}gnoo kl:[ P(Ay) (by independence)

=1t tin TL 0= PCA)

Note that for large k, P{A} is < 1, so we use the approximation e~ ~ 1 — . Recall that

2 3
e‘”zl—x—i—%—%—i—-“

and so in fact for z € (0,1),
2

1—x§e*x§1—x+%.

Claim: e=* > 1 — g for all z € [0, 1]

Proof: By the Mean Value Theorem, for any x € (0,1), there exists ¢ € (0,1) such that
0

e v —e”

z—0

= —e_c

So,ecx=1—ze “>1—2x.

Now,

. . < ¥ —P{A,}

= mlgnoo exp < i P{Ak}>
k=n
@)
k=n

=0.
This completes the proof. [
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Example: (Behavior of Exponential Random Variables) Let {E,},>1 be a sequence of independent and
identically distributed random variables on exp(1), i.e., for all n, P{E,, >t} = e~* for ¢t > 0. Then,

li En 1
1m su =
n—mmplog(n)

E,(w
Proof: Translate the statement: For a given w € §2, lim sup n(w) = 1 means that

E
Ve > 0, N, such that 22 ~ 14 ¢

log(n)
and, because of the equality to 1,
E,
VM, dn > M such that () >1—e
log(n)
So,
E,
l-e< W)<1+e
log(n)

for the first inequality happens infinitely often and the second inequality happens eventually always.
This is the statement that we will prove.

First we show the left-hand inequality, i.e., that

E, .
P 1-— 0., =1.
%%w> 610}

To apply the Borel Zero-One Law, we compute

Sty > 1)

n=1

and show that this is infinite. Well,

Zp{lof("n) >1 —e} =Y P{E, > (1-¢)log(n)}

_ i ¢~ (1—)log(n)

n=1
)
1
- Z nl—e = oo
n=1

On the other hand,

E,
P 1 =
%mm>+* 0

=1
Zn1+6<oo.

n=1

since by a similar argument

After some bookkeeping which can be found in the textbook, this proves the theorem. [J

Definition: Let {X,,},en be a sequence of random variables and define
./_'.TIL = O’(Xn+1, Xn+2, .. )
where n € N. The tail o-field 7 is defined by

T = ﬁ Fl.
n=0
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Examples:
(1) {w Z Xn(w) converges} € 7. Why is this true? For all m,
n=1

X (w) converges if and only if Z X (w) converges.

n=1 n=m

€ Fl,

n—oo

(2) limsup X, liminf X,,, {w
n—oo

n— oo

lim X, (w) exists} eT.

(3) (Important!) Define S,, := X7 + Xo + -+ + X,,. Then,

fo

Definition: A o-field whose events all have probability 0 or 1 is called almost trivial.

lim S0 _ 0} eT.

n—o0 N

33

Lemma 4.5.1: Let G be an almost trivial o-field and let X be a random variable such that X € G. Then,

there exists ¢ such that P{X = ¢} = 1.
Proof: See book.

Theorem 4.5.3: (Kolmogorov Zero-One Law) Let {X,},en be independent random variables with tail

o-field 7. Then, for any A € T,
P{A} € {0,1}.

Proof: Suppose A € 7. We claim that A is independent of itself. This immediately implies that

P(A) € {0,1} and the theorem follows. We now show that A is independent of itself.

Define
n
]:n = O'(Xl,XQ,--~,Xn) - \/ U(X])
Jj=1

and

Foo = 0(X1,Xa,...) = \/ 0(X)).

Jj=

—

Note that A € T C F/ for any n. In particular,

ACTCF| =Fu.

Since the X,,’s are independent,
Fo LF.

Therefore, A 1 F, (since A € F). This is true for all n. Hence,

e

n=1

Even though U Fn # Foo, we do have that o (U ]-'n> =Fo.

n=1 n=1
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Let C; := {A} and let Cy := U Fn. Note that C; L Cs. Recall a basic criterion for independence:

n=1
o(C1) L o(Cy) if ¢4 and Cy are m-systems.

But, A € 0({A}) and A € F, = 0(C2). So, A L A, which completes the theorem. O



Chapter 5

Chapter 5 - Integration and
Expectation

Section 5.1 - Preparation for Integration

Definition: Let (2, F,P) be a probability space. We say that X : @ — R is a simple function (or a
simple random variable) if it has finite range. We can write

k
= ailay
i=1

k
where a; € R, A; € F, {A;} are disjoint, and |_| A; = Q.

=1

Remark: Let £ be the space of all simple random variables. We claim that £ is a vector space. We check
the conditions.

e Closure under scalar multiplication: If
k
X = Z ail{Ai}
i=1

then
k

aX = Zaail{Ai} €.
i=1
e Closure under addition: If
¢
Y =) bl
j=1
then

k¢
(X +Y)(w ZZ a; +b;)1ia,nBy (W) € €.

i=1 j=1

Additionally, note that if X,Y € &£, then XY € £. Also, X VY efand X AY € €.

35
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Theorem 5.1.1: (Measurability) Suppose X (w) > 0 for all w € Q. Then, X is F-measurable if and only if
there exist simple random variables {X,,} C & such that

0< lim X,/ X.

n— oo
Proof: Let X, € £ such that 0 < lim X,, / X. Then, X,, € F (since 0(X,,) = 0(A7,..., A}), where
n— oo
each A" € F). If X,, / X, then X is F-measurable as well, by the results in Section 3.2.

Conversely, suppose X is F-measurable. Define,

. n2™ E—1
Y= | 5 1{ k-1 k } +nlxzn}

— — <X < =
k=1 2n - 2’ﬂ

X, is F-measurable by construction since both

{kQ_nl<X<2kn} and {X >n}

are. Consider the following picture, with = [0, c0).

X(w)

"IN

N

L 4

k-1 k
Let A} = { on <X < 271} and B,, = {X > n}. Then,using our picture:

IN

> A3

For any given w € Q,
Xn(w) < Xpp1(w) < X(w).

If X(w) < o0, then lim X, (w) exists. Furthermore,

n—0o0

X (@) - Xn(@)] <

21’L
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for sufficiently large n. So,
lim X, (w) = X(w).

n—0o0

If X(w) = o0, then
lim X, (w) = 0.

n—oo

This completes the proof. [

Remark: Note further that if sup X(w) < oo, then sup | X, (w) — X (w)| — 0.
weN weN

Section 5.2 - Expectation and Integration

The undergraduate version of expectation is the formula:

E[X] = /R © dP(x).
For us:

k
= Z a;P{A;}.

Example: E[c] = cP{Q} =1 and

E[14] = 1-P{A} +0-P{A°} = P{A}.

Remark: Expectation is linear. Recall that

aX + 5Y = Z(aai +Bbj)1{AiﬁBj}~

i
So,
ElaX + 8Y] = (aa; + Bb;)P{A; N B;}
i

—Zaaz}P’{A mB}+Zﬂb P{A; N B;}
—aZazzP{A N B }+ﬂZb Z]P’{A N B;}
=a Z ai}P’{Ai} +8 Z bjP{Bj}
:a]EEX]—i—BIE[X}. J

Remark: A random variable can have P{X < oo} < 1. For example, consider the return time of a Brownian
motion in 3 dimensions to a finite sphere. Note that this allows that the cdf of a probability distribution not
approach 1 as r — oc.

Remark: A random variable can have P{X < oo} = 1 yet E(X) = co. An example of this is the Cauchy
distribution. The density function of a Cauchy random variable is
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Then,

E[X] = 2/0 L - 2/1 5 du = 2[In(u)]%, = oo,

where u = 1 + 22 and du = 2z dz.

Notation: Let £, be the set of nonnegative simple random variables and define
X, ={X:Q-R|X >0, o(X) € F}

where R = R U {—00, 00}.

Construction: Let X € X and suppose P{X = oo} > 0. Then define E[X] = cc.

Now suppose P{X = oo} = 0. By the measurability theorem above, there exists a sequence of simple
nonnegative nondecreasing random variables {X,, },>1 C &4 such that

lim X, = X.

n—roo

By monotonicity of expectation, {E[X,]},>1 is a nondecreasing sequence of reals, and so lim E[X,] exists
= n—00

in R.. So, it is unambiguous to define
E[X]:= lim E[X,]

n—00

where E[X] € R,.

Example: For the Cauchy distribution, construct an approximating sequence X, as in the above
measurability theorem and compute E[X,,].

Proposition 5.2.1: The operator E is well defined on X in the sense that if X,, / X and Y,, / X, then

lim E[X,] = lim E[Y,].
n— oo n— 00
Proof: It suffices to show that if
lim X,, < lim Y,

n— oo n— oo
then
lim E[X,] < lim E[Y,].
n— o0 n— o0

Fix n € N for the moment. For any m € N, we have X,, AY,, € E,. Additionally, note that

lim X, AY,, = X,

m—r 00

(since lim Y, > lim X,, > X,). By monotonicity,

m—r o0 n—oo

E[X,] = lim E[X,AY,] < lim E[Y,,].

m—roo m— o0

This is true for all n; So,
lim E[X,] < lim E[Y,,].

n—oo m— o0

Symmetry gives the reverse inequality. [

Basic Properties: Suppose X € X,. Then we have,
(1) 0 <E[X] < o0,
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(2) linearity,
(3) monotone convergence theorem.

Proof: Suppose {X,},>1 is an w-by-w increasing sequence such that

lim X, = X.
n—oo
Then,
lim E[X,] = E[X],

n—oo
or, as Resnick says,
E [ lim 7 Xn} = lim 7 E[X,].
n—oo n—oo
For each n, there exists a sequence {Y&")}mzl C &, such that
Y™ 7 X,
We need to construct a sequence {Z,,}n>1 C £+ such that

Zm ] X.

To this end, define
X =\ V.

n<m

Observe that {Z,} is indeed increasing. For n < m:

vy o<z, < X,

e

X, <lm Z,<lm X,

m—o0 m— o0

N

X = lim X, < lim X, < lim X, = X

n—oo n—oo n—oo
Also,

E[X,] = lim E[Y, (V]

m—0o0

< lim E[Z,]

T m—oo
< lim E[X,,].
m—0o0
Taking n — oo,
lim ]E[Xn] < lim E[Zm} < lim E[Xm}.

n— 00 m—o0 m—o0
Hence,
E[X]=E { lim Zm} = lim E[Z,]= lim E[X,]. O
m—r 00 m—0o0 m—00
Definition: Given an F-measurable random variable X, define

X, =XV0

and
X_:=—(XN0).

39
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Note that | X| =X + X_. If E[X}] < co and E[X_] < oo then we say X is integrable (X € L;(PP)) and

E[X] := E[X,] — E[X_].

Remark: If only one of E[X ]| and E[X_] is finite, then we say that X is quasi-integrable, and E[X] = +oo.
E[X] is considered undefined if both are infinite.

Properties:
(1) If X € L1(P), then P{X = +o0} =0.

(2) (Linearity) If E[X] exists, then E[cX] = 2E[X]. Futhermore, if X, Y € L;(P), then E[X + Y] =
E[X] + E[Y].

(3) (Monotonicity) If X > 0, then E[X] > 0.

(4) (Continuity) If {X,}n>1 C L; such that X,, / X, then E[X,,] / E[X].

(5) (Modulus Inequality) If X € Ly, then |[E[X]| < E[X]].

(5) (Variance, Covariance) Recall Var(X) := E [(X — E[X])?]. Well,

Var(X) = E [(X - E[X])’]
=E[X? 4+ 2XE[X] + (E[X])?]
— E[X?] - (E[X))"
Recall Cov(X,Y) = E[(X — E[X])(Y — E[Y])]. By a similar calculation
Cov(X,Y) = E[XY] - E[X]E[Y].

Later in the course, we will show that independence implies E[XY] = E[X]E[Y], i.e., X L Y implies
Cov(X,Y) = 0. However, the converse is not true.

(6) Independence implies that the variance of a sum is equal to the sum of the variances.

Var (Zn: Xi> = Cov (i Xi, Zn:Xz)
=1 1=1 =1

= Z Cov(X;, X;) + Z Cov(X;, X;) (by bilinearity)
i i#i

= Z Cov(X;, X;) = Z Var(X;). (by independence)

(7) (Markov Inequality) If X € Ly, then

P{X]> A} <
(8) (Chebyshev Inequality) If X € Lo, then

P{IX ~ E[X]| 2 A} < ~oa?

(9) (Weak Law of Large Numbers) Let {X,, },>1 be iid with finite mean g and finite variance o. Then, for

all e > 0,
. 1
JLIEO]P’{HZ;XZ-—M >e}—0.
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> € D)
1

Proof: Calculating,

1 n
P{n;&—u

AN
|
5
=]
N
S|
I'M:
>
~_

Clearly,

Section 5.3 - Limits and Integrals

Recall the Monotone Convergence Theorem: If 0 < X,, / X, then 0 < E[X,,] / E[X].

Series Version of Monotone Convergence Theorem: Suppose {X,,},>1 > 0. Then,

E ixn :iE[Xn]'
Ln=1 a n=1

Proof: We see that

n=1

Fatou’s Lemma: If {X,},>1 > 0, then

E [lim inf Xn} < liminf E[X,,].

n—roo n—roo

In general, if there exists Z € Ly such that X,, > Z for all n, then (%) still holds.
Proof: Observe

E {lim inf Xn] )

n—oo

A\

k=n
o
- e[

< lim inf E[X].
n— 00

41

(Chebyshev Inequality)

(MCT)

(linearity)

(MCT)
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The justification for the last step is that for almost all w € €,

E(KXMM>§M&J<QgEMm)+@

k=n

where we define k. (€) so that E(Xj,) < (gnf E(Xn)> +e O
>n

Corollary: E [lim sup Xn} > limsup E[X,,].

n—oo n— oo

Dominated Convergence Theorem: If X,, — X and if there exists a dominating random variable Z € L,
in the sense that |X,,| < Z for all n, then E[X,,] — E[X] and E[|X,, — X|] — 0 (convergence in L;).

Proof: We have —Z < X, < Z. So, apply Fatou’s Lemma to both sides. Then,

E[X] =E [lim inf Xn}

n—oo

<liminf E[X,]

n—oo

< limsup E[X,,]

n—oo

<E [lim sup Xn}
n—o0

< E[X].

So, we have equality throughout. O

Example: Take (2, F,P) = ([0,1], B([0,1]), A) and define
Xn = ’17,21[0’1/”].
Note that
nh_)I%O Xn(w)=0
for all w € (0,1]. However,
. o . 2 _ . _
235, Eln] = Jim nPlw < 1/} = [y, n =0

So in this case
lim E[X,] >E| lim X,

Section 5.4 - Indefinite Integrals

Definition: Let (Q, F,P) be a probability space. If X € L;(P), then we define
/XdIP’ =E[X14].
A

This is called the integral of X restricted to the event A.



SECTION 5.5 - THE TRANSFORMATION THEOREM AND DENSITIES 43
Section 5.5 - The Transformation Theorem and Densities

Let there be two spaces (€, F), (€, F). Let P be a probability measure on (£, F). Suppose
T:(QF)— (Q,F).

Define _
P.=PoT !

so that

Transformation Theorem: Suppose X : (Q, F) — (R, B(R)).
(i) If X > 0, then
/ X(T(w))P(dw) = /~ X (@)P(dw),
Q Q

ie.,

(ii) X € Ly(P) if and only if X o T € Ly (P), in which case
/ X(T(w))P(dw) = / X (@)P(d).
T-1(A) A

Proof of (i): We prove the statement first for indicator random variables, then for simple random
variables, then for nonnegative random varibles (by MCT), then for all random variables (by DCT).

Suppose X = 17 where Ae f, ie.,
R(T(w)) = 15(Tw)) = Ly 5 @):
Then,

| Rr@pp) = [ 15 @)

Now suppose X is simple, i.e.,

Then,
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Next, let X be nonnegative (i.e., X > 0) and F-measurable. Then, there exists a sequence of random
variables X,, such that X,, / X. This implies

X, 0T/ XoT.

This should be checked by the reader.

Next, we calculate, using the Monotone Convergence Theorem:

/ X(T(w))P(dw) = / lim X, (T(w))P(dw)
Q Q

n—00

= lim [ X, (T(w))P(dw) (MCT)

n— oo Q

:/:mniaa@u@ (MCT)

Lastly, by the Dominated Convergence Theorem, we can apply the result to all random variables (not
just the nonnegative ones). O

Proof of (ii): Follows the same ideas. [
Remark: We have said that the cdf F' can be thought of as F(x) = P{X < z}. In this case, we are treating
F like a function. However, we can also view F' as a measure
F:B(R) — [0,1]

by
F(A) = (Po X 1)(A)

for all A € B(R).

Corollary to the Transformation Theorem:

(i) Suppose X is a random variable with c¢df F. Then,
E[X] = / vF(dz).

(ii) Suppose X : (Q,F) — (S,S) with cdf F = Po X~!. Furthermore, suppose
9:(8,8) = (R,B(R))
and that f is S-measurable. Then, the expected value of g(X) is

Blg(X) = |

Q

mmwmwmz/’g@mwm

zeS

Proof of (i): Let X : (Q, F) — (R, B(R)) and X : (R, B(R)) — (R, B(R)), where X (z) = z. Recall
the equation

/ X(T(w))P(dw) = /~ X (@)P(d).
Q Q
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Here, we have that the right hand side is

/ zF(dx).
R
Set T(w) = X (w). Then the the left-hand side becomes

X(w)P(dw).
Q

Since these are equal, we get the result. [J

Remark: We say that X or F'is absolutely continuous if there exists a nonnegative function f : S — R such
that

F(A) = /A F(w)dz

for all A € S. In particular,

We say that F'(dx) has density f(x)dz.
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Chapter 6 - Convergence Concepts

Section 6.1 - Almost Sure Convergence

Definition: (Almost Sure Convergence)

Consider a probability space (£2, F,P). Then this is defined by: there exists N € F with P(N) = 0 such that
the statement of interest holds if w € N¢. N is often called the exception set.

Remark: A typical statement may be X = X’ a.s. or X > X" a.s. or lim X,, = X as..
n—oo

Example: Consider the probability space ([0,1], B([0,1]), A). Define

{ n, ifwel0,1/n]

Xn(w) = 0, ifwe (1/?’L, 1]

Then, X,, — X almost surely. The exception set is N = {0}.

Proposition: Let {X,},>1 be iid random variables with a common cdf F(z). Suppose F(z) < 1 for all
z € R. Define

M, = \n/ X..
i=1
For all w, M, (w) = ?61%1)]( X;(w). Then, M,, /' oo almost surely.
Proof: P{M, <2} =P{X;<=z,... X,<az}
= f[IP’ {X; <z} (by independence)
i=1
= (F(2))". (common cdf)
Note that,
n=1 n=1
_FG)
1—F(j)
< 00.

46
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So, by the Borel-Cantelli Lemma (note that the M,s are dependent), we have that
P{M, <jio}=0,

ie.,

P {limsup{w | My (w) < j}} = 0.

n—oo

Define
Nj := limsup{M,, < j}
n— oo
and then note that
NE = liminf{M, > j}.
n— oo

So, for all w € N]C and for all n,, there exists n > n, such that M, (w) > j.

Define
N =N
Now,
P{N} <> P{N;} =) 0.
j=1 j=1
Hence,
P{N®}=1.0O

Section 6.2 - Convergence in Probability

Definition: (Convergence in Probability) {X,},>1 converges in probability to X, denoted X, Fx if,
for all € > 0,
li_>m P{|X, — X|>e}=0.

Remark: This is usually demonstrated by Chebyshev’s Inequality.

Remark: We can write the definition of almost sure convergence alternatively:

P{w € Q| lim X,(w) = X(w)} =1

Theorem: [Almost Sure Convergence] = [Convergence in Probability].
Proof: Suppose X,, —=— X. Then, for all ¢ > 0,
0=P{|X, — X|>eio.}

= P{limsupﬂXn - X|> e}}

n—oo

= lim P{ | ) {|X, - X|> ¢}

N—oc0
n>N

> lim P{|X, - X|>¢}.
n—oo
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Hence,
lim P{|X, — X|>¢e}=0
n—oo

which gives convergence in probability. [

Section 6.3 - Connections Between Almost Sure and In Probability
Convergence

Theorem: Suppose {X,,},>1 and X are random variables.

(a) The Cauchy criterion for random variables is: for all €¢,d > 0, there exists N such that for all n,m > N,

we have
P{|X,, — Xn| > €} <.

This is true if and only if X,, —— X.
Proof: Assume X,, — X in probability. Let ¢ > 0 be given. By the triangle inequality,
{1X0 = Xon| > €} € {IXn = X| > ¢/2} U{[Xu — X| > ¢/2}.
Taking probabilities and using subadditivity,
P{| X, — Xin| > €} < P{{|Xn — X| >€/2} U{| X\, — X| > €/2}} <P{|X,, — X| > ¢/2}+P{| X\, — X| > €/2}.
Now, for €/2, and 0/2, there exists N such that for all n,m > N,
P{|X, — X|>¢€/2} <d/2.
Conversely, suppose { X, }n>1 is Cauchy in probability. We claim that there exists a subsequence
{Xy,} which converges almost surely. To see this, define ng =1 and
nj =inf {N >n;_1 [Vn,m > N P{|X, — Xpn,| >277} <277}.
It follows that

P{|Xn, ., — Xn,| >277} <279,
Hence,
e .
> P{Xn,, — Xn,|>277} < 0.
j=1
Define 4
N := limsup{|X,,,,, — Xpn,| >277},
j—o0
ie.

N={weQ||X,,,, (w) — Xn,(w)] >277 io.}.
By Borel-Cantelli,
P{N} = 0.
Well, observe that for all w € N, the sequence {X,,(w)};>0} is a Cauchy sequence of real
numbers. So, there exists X (w) such that X, (w) — X (w), for all w € N©.

To show that having a convergence subsequence and being Cauchy in probability implies
convergence in probability note that

P{|X, — X|>e} <P{|X, — X;,| > ¢/2} + P{| Xy, — X| > ¢/2}.

The second summand on the right-hand side is < §/2 by the almost sure convergence of the
subsequence. The first summand on the right-hand side is < 6/2 by the Cauchy subsequence, as
long as we pick n; to be the smallest index in the convergence subsequence which is > n. O
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(b) X, 25 X if and only if for each subsequence {X,,, } there exists a further subsequence X such

that convergence is almost sure.

Nk (i)

Proof: Suppose X,, — X in probability. Then, any subsequence {X,,,} converges in probability
(to X) as well. By part (a), {X,,} is Cauchy in probability as well, and we already showed that
this implies that there exists a further subsequence that converges almost surely.

Conversely, suppose that for all subsequences {X,,,} there exists a further subsequence that
converges to X almost surely. We proceed by contradiction. Suppose X,, /4 X in probability.
Then, there exists a subsequence {X,,, } and an € > 0 and § > 0 such that for all ny,

P{|X,, —X|>¢€} >0. (%)

However, by hypothesis, X,,, has a convergent subsequence. This is a contradiction to (%),
because
P{X converges to X} =1—P{|X

By a Borel-Cantelli Argument, using the fact that

ZP{|X,LW) - X|[>e€} > Zézoo,
i=1 i=1

we see that we have a contradiction. [J

k) gy — X|>e€ i.o.}

Section 6.5 - L, Convergence

Definition: For p € (0,00), define L, by
X eL, it E[|X]P] < oo.
The distance on this space is
d(X,Y) = (E[X - Y]P)'".
The L, norm is
11 = E (XD

Definition: We say that X, i> X if
lim E[| X, — X|P] =0.
n—oQ
Example: Suppose {X,},>1 are iid with E [X,,] = u and Var(X,,) = 0. Then,
1 n
[

Proof: Define

Then,
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Remark: Observe that
L
X, —5 X] = [X, > 2]

To see this, use the generalized Chebyshev inequality:

]E“Xn _X|p] N

P{|X, - X|>¢} < -

0.
The converse is false. Consider the space ([0, 1], B([0,1]), A). Define

Xn(w) = 2” . 1(071/,”] (CLJ)

This is because
1 1
P{Xn(w) > } =—- =0,

yet
np

2
E[|X,[F]= — — .
n

Remark: Hoeffding’s Inequality provides exponential estimates, but without calculating E[e®X]. This opents
the way for what are called “Concentration Inequalities”, which will appear in Homework 5.

Lemma: If E[X] =0 and a < X <, then
E[etX] < etz(b—a)2/8.

Proof: First, by convexity,
etX < aetb + (1 _a)ta

— b—X
where a = a and 1 —a = T Take expextations of each side:
—a —a
aetb beta
E tx <
[ < b—a + b—a
= 9(t(b=a))
where
9(u) = —yu +log(L — v + ~e*,
where
__a
Ty —a

Note that ¢g(0) = 0 and ¢’(0) = 0. Furthermore, ¢”(u) < 1/4 for all w > 0. By Taylor’s Theorem,
there exists & € (0, u) such that

o(u) = (0) + ug'(0) + 3ug"(€)
< t2(b —a)?
- 8

. O

Lemma: (Chernoff’s Method) Let X be a random variables. Then,

<' —te tX.
IP’{X>6}7t1r21£e Ele*]

Proof: Generalized Chebychev Inequality together with optimization over ¢. O
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Theorem: (Hoeffding’s Inequality) Let {X,},,>1 be iid such that E[X,,] = ¢ and a < X,, <b. Then, for all

€e>0,

—2ne?

1 — 2
PLI=ST X, —ul > el <2e(b—0a)?

Corollary: If {X;,..., X, } are iid with a < X; < b, then with probability at least 1 — ¢,

1< (b—a)? 2
Y X;—ul < log { = ).
n; i _\/ 2n 0g<5)

Proof: Without loss of generality, u = 0. Now, define

S
i=1

X, =

3=

So,
P{Xn|z e} =P{X0 2 e} + P{-X, 2 ¢}.

Observe that

i=1

tiXZ

=Ple i=1 Z etne

P{X, > ¢} :P{ti:Xi > tne}

n

ZX

—tneE |e =1
<e (Gen. Cheb. and Chern. Ineq.)
=etne ﬁ E [e'¥{] (independence)
i=1
= e 'K '] " (independence)
< etne (etQ(bfa)Q/S) . (Lemma)

So,
P{X, >¢} < et (b—a)?/8—te

By calculus, the exponent is minimized when ¢t = 4¢/(b— a)?. Apply also to —X,, and then plug in. [J

Inequalities:

(1) Cauchy-Schwartz Inequality:

EIXY]| <E[|XY]] < E[X?]'/?E[y?]'/2,

(2) Holder’s Inequalitky:
E[IXY|] < E[|X[P]/?E[|Y|9]"/

1 1
where — + — = 1.
p q
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(3) Minkowski’s Inequality:
X+ Yl < 1 X1+ 1Y ]lp-

(4) Jensen’s Inequality: If f(x) is convex, then

Elf(2)] = f(E[z]).



Chapter 7

Chapter 7 - Laws of Large Numbers
and Sums of Independent Random
Variables

Section 7.1 - Truncation and Equivalence

Definition: The truncation of a random variable is

Xo - 1{x,1<n}-

Example: Suppose Var(X,) = oo, but nevertheless, Var(X, - 1{x,|<n}) < 0o for all n. The truncations
will help.

Definition: Two sequences of random variables {X,,} and {X,} are tail equivalent if

oo

ZP{Xn¢X7L} < .

n=1

Proposition: (Equivalence) Suppose {X,,} and {)/(V,L} are tail equivalent. Then,

oo

(1) Z(Xn — X,,) converges almost surely,

n=1

(2) Z X, converges if and only if Z X, converges,

n=1 n=1

(3) If there exists a sequence {a,,} C R such that a,, / oo and if there exists a random variable X such that

1 n
— Z X; — X almost surely,

a,
n 7:1

then also

1
— X,; — X almost surely,

93
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Proof: By Borel-Cantelli, P {Xn #* )?; i.o.} = 0 implies that

]P’{liminf(Xn - 5(2)} ~ 1.

n— oo

Restrict to the set w € {lim inf(X,, = ),5;)} We have that there exists N(w) such that for all n >
n—oo
N(w), X,(w) = X,,(w). This immediately yields (1).

Furthermore, for each such w, Z Xn(w) = Z X, (w), which implies (2).
n=N(w) n=N(w)

To prove (3), observe that

1 &~ 1 &~ 1 <&
—E Xj=—)» X;,—-X; —E X;.
a iTy J J+a < J

The first term on the left-hand side goes to 0 almost surely as n — oo, and the second term on the
right-hand side goes to X almost surely as n — oco. This completes the theorem. [J

Section 7.2 - A General Weak Law of Large Numbers

Theorem: (General WLLN) Suppose {X,,},,>1 are independent random variables and define S, := ZXJ"
j=1

Then, if

(i) > P{|X;| >n} =0, and
j=1

L1
(i) — > E[X7 1gx,1em] =0,
j=1

then we have that g
2n "9, 0 in probability
n

where .
an = E[X; Lxem] -
j=1

Remark: In the special case where the random variables are iid, with E[X] = u and Var(X) = o2,

then
> P{|X|>n} — 0 (in probability)  iff  nP{|X|>n} — 0 (in probability).
j=1

(To prove this special case, use Chebyshev.)

Proof: Define )/(\n/] = X1y x,)<n}, and :S'\; = Z),(:J Then,
j=1

n

ZP{)?,; ;AX]-} :iﬂ»{p@-\ >n} 0.
j=1

=1
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We claim that S,, — §; JD—» 0. To see this, note that

P{|Sn — 5al > e} <P{S, # 50}
+

1
Apply Chebyshev’s inequality to P {
n

p{
n

Sp — E[Sy]

by hypothesis. Above, we used the fact that

Var(Y) = E[Y?] - (E[Y])* < E(Y?).

Therefore,
Sn an P 0.
n
Hence,
Sn_anisn_sn Sn_an P 0. O
n n n
—_—
\F0 \VFo

Theorem: (Khintchin’s WLLN, with only first moment) Let {X,,} be iid and E[X;] = p. Assume X; € Ly,
i.e., E[|X1]] < co. Then,
Sn P
= —— .
n
Proof: We need to check the two conditions.
(1) n
> P{IX;| > n} = nP{|X1| > n}

j=1
= nE [1{1x,/>n})
=E [nl{x,[>n})
=E [|X1/1{x,/>n}]
=—0,

because |X1|1{|x,|>n} (W) —2% 5 0 and since |X;| € L;(P) and |X;| is dominating.
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(2) For iid random variables, we're actually showing (by linearity) that,

1
~E [X*11x1<my] = 0.

Well,
1 1
~E[X*1x1<ny] < — (B [X*1xicevm] +E [X 1 eymzixi<ny])
1
<~ (En+E [nX1eymgix|<n])
<€+ B [|X 1 {eymzx|<n}) — € (DCT)
Also,
lan _ nE [X11qx,|<n}] LR =
n n
by DCT. O

Theorem: (Feller’s WLLN, without first moment) Let {X,,} be iid random variables, with
lim 2P {|X,| >z} — 0.
T—>00

Then,

Sn
— — B [Xilqx, <n)] = 0.

Section 7.3 - Almost Sure Convergence of Sums of Independent
Random Variables

Theorem: (Lévy’s Theorem) If {X,,} is an independent sequence of random variables, then

ZX” converges a.s. iff Z X, converges in probability.
n

This means that the following are equivalent:
(1) S, is Cauchy in probability.
(2) S, converges in probability.
(3) S,, converges a.s.
(4) Sy, is a.s. Cauchy.
Remark: Formally, (1) says that
Ve, 63N, 5 such that Vn,m > N s : P{|S, — Sm| > €} < 4.

(4) says that

VedN,(w) such that (for w € Q where P {ﬁ} = Wi, m > No(w) : |Sn(w) — Sm(w)] < e.

Proof: (1) <= (2) by Theorem 6.3.1(a). Also, (3) <= (4) by the corresponding equivalence for
sequences of real numbers shown in analysis. We’ve already shown that (3) = (2) by Theorem
6.2.1. The complete the proof, we will shoe (1) = (4).
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Define
Ev:= sup |Sm — Snl.
m,n>N
We need to show that (1) implies that
é.N a.s. 0_

Note that {{x}nen is a positive non-increasing sequence of random variables. By Exercise 6.1,
e —— 0] iff [E3 = 0].
So, we will show that &y —— 0. Now,

Env = sup |S, —Sn+ Sy — S,
m,n>N

<2sup |S, — SN|
n>N

= 2sup|Sn+; — Sn|.
j=0
We will now show that this goes to zero in probability. To this end, let € > 0 and S € (0,1/2). The
fact that {S,,} is Cauchy in probability implies that there exists N, s such that for all n,m > N, s, we

have

P{|S, — Sm| > €/2} < 4.
So, for any N > N 5, we have that

]P){|SN+j — SN| > 6/2} <é

for all j.
Define
X; = Xnyi
Sj=> X;=SNn4;—Sn.
i=1
Now,
P{Sup|SN+j—SN| >6/2} =PJ lim sup |[Sni; — Sn| > €/2
jZO N/Hooje[N/]
= lim Pq sup [Sny; —Sn|>€/27.
N'—oc0 JE[N]
]P’{ sup /S?‘ > 6/2}.
0<N/
For the next step, we will use Skorohod’s Inequality, which tells us that there exists ¢ € (0,1) such
that )
IP’{ sup :SY:’ > 6/2} < —P{ S| > 6/4},
0< N’ 1-c¢
where L
¢ = sup P{‘SN/ - Sj‘ > 6/4} .

JSN'

Since we have ¢ < § by the Cauchy property, the whole thing goes to zero, i.e., £y .00
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Section 7.4 - Strong Law of Large Numbers

We will discuss two motivating examples.
(1) Logarithm Growth of New Records.
(2) Explosions in Arrival Processes.

Example (1): Let {X,} be an iid sequence of random variables with common cdf F. We defined X,, to be
a record if
max X; = X,.
i€[n]
Define u,, = Z 1;x, is a record}- The Strong Law of Large Numbers will allow us to prove the following result
i=1
characterizing the rate at which records are broken:

lim Hn

=1 as..
n—oo log(n) a.s

Example (2): Define {7, },>1 to be the independent sequence of random variables with P {7,, >t} = e~ *»*

for all t > 0, i.e., 7, ~ Exp(\p).

Think of 7, as the times between events and let Ny be the number of events as of time ¢. The Strong Law
of Large Numbers will help us characterize when such a process explodes to infinity.

Lemma 7.4.1: (Kronecker’s Lemma) Suppose {an}n>1 and {z,},>1 satisty z, € R and 0 < a,, / oo. If

o0
Tn
E — converges, then

n=1 "

Ll
nlgr;anxk—O.

k=1
oo
Tk . .
Proof: Define r, := Z —. Then, r, — 0, and given ¢ > 0, there exists N, such that for all
k=n-+1 Ok
n > N, we have |r,| < e. Now, note that
T
— =Tn—1 —Tn.
an
So, Ty, = ap(rn—1 — 1) and thus
n n
Zl‘k = Z(Tk_l — Tk)ak.
k=1 k=1

The rest follows by some calculations which can be found on pg. 214 of Resnick. O

Recall: (Kolmogorov Convergence Criterion) If {X,,},>1 is independent with Z Var(X,,) < oo, then

n=1

(Xn - E[Xn])

n=1

converges almost surely.
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Corollary 7.4.1: (Strong Law of Large Numbers) Let {X,, },,>1 be independent with E [X?L] < 00. Suppose
that {b,} is a sequence that increases to oo such that

o0

E Var <Xk) < 00.
by,
k=1

Then,
1 a.s.
™ (Sn — E[S,]) —= 0.

Apply the Kolmogorov Convergence Criterion and Kronecker’s Lemma. [J

Example (1): (Record Counts) Define

1, = l{Xk is a record}

and

Proposition: lim Fn
n—oo log(n)

= 1 almost surely.

1 1
Proof: Assume P{1;} = % and recall that E[1;] = T Note that
Var (1) = E [1 ] Ef1
1
Tk ﬁ
k-1
=

We now check convergence.

k=2 k210g

ZVM (10g ) i Ver(Ly)

: Ic2 log

> 1 >~
/ P EE—— dx = / 7 du < 00.
2z (log(x)) log(2) U

1, — E[1]
> ity <

k=2

2

By the integral test,

Therefore, we conclude that

By the Strong Law of Large Numbers,

1 .
m <k_1 (]-k —E [1k])> —0

and so

> E[14]
Mn a.s. k=1

log(n) log(n)
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We need to show that the right hand side goes to 1 as n — co. Well,

I 1 1 7y
—- — — 0,
log(n) kz::l k log(n)
where 7y is Euler’s Constant.

Example (2): (Explosions in Arrival Times) Let {7,}22; be independent with 7,, ~ Exp(\,). Say we have
a counting process

with Sp = 0. Define

] ] ] ] ] \t
I I I I I L4
I S1 Sy 53 Sy S5 Se

We get an explosion when

which implies that there exists T such that

Claim: P {explosion} = not 1n . (It can only be 0 or 1 because it is a tail event.)
07 Z E =0
n=1
(o) oo 1
Proof: Suppose that P ZTk < 00 p = 1. We aim to show that Z — < 00.
k=1 k=1 A

By hypothesis, exp (— ZTk> > 0, and so

K [exp (_iﬂ ~0
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Thus,

1<t [-$50)

67—]‘"| (by MCT)

= nh_{glo H E [e™ 7] (by independence)

Now,

E

S [

k=1

The last step is by the Limit Comparison Test and the fact that

lim log(1 + z)

z—0 €T

=10

Section 7.5 - Strong Law of Large Numbers for IID Sequences

Theorem: (Kolmogorov’s SLLN) Let {X,,},,>1 be ild random variables, and define S,, := ZXk. Then,

there exists p € R such that =
p P
n
if and only if
E[|X1]] < o0

When convergence does occur, p = E [X7].
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Proof:
Sn as.
(=) Suppose that — —— pu.
n
Lemma 7.5.1: Let {X,,} be iid. Then, the following are equivalent.

(a) E[|X1]] < oo.

(b) lim

n—oo

= 0 almost surely.

n

(c) ZP{|X1| > en} < oo, for all € > 0.

n=1

Proof: (sketch) [(b) <= (¢)] can be shown using the Borel 0-1 Law.

[(a) <= (c)] can be shown by using the tail formula for expectation
E[| X1]] :/ P{|X;| >z} dz
0
and comparing to the sum. [

So, by Lemma 7.5.1, E[|X;]] < oo if and only if

n

n

lim = 0 almost surely.
n—oo

But, note that

(«<=) Suppose E[|X;]] < oc.
Step 1: (Truncation.)
Define )?n = Xn1yx,|<n}- We need to show that X,, and )N(n are tail equivalent, i.e., that
Z]P’{Xn ” )?n} =Y P{|Xu| > n} < o0
n=1 n=1

by Lemma 7.5.1 [(a) = (c)]. Therefore,
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Step 2: If the truncated series converges, then it converges to the right value.

Claim: <S” —E[Xﬂ) ="
n

TTM:
B
I
l°

Proof: Note that

15 (t-ef5]) - LS -eim

k=1 k=1

The last step is by DCT. O

Step 3: The truncated series converges.

Confirm that % kzn:_l ()Z'k —-E [)N(kD — 0 by showing that

> X
ZVar (kk < 0.
k=1

See Corollary 7.4.1. O

Applications of the Strong Law of Large Numbers

Renewal Theorem: Let {X,},>1 be iid with X,, > 0. Let E[X;] =: pr € (0,00) and let E[|X;|] < co. By

the Strong Law,

S a.s.
2

n
Zn L.
n
Thus, S,, — oo almost surely.

Define a counting process

= N W ke OO
|
I

] ] ] ] Ly
(_I_C T T T T 7
Sl SQ 53 54 55 SG
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Observe that
{N() <np={Spt1 >t}
and thus
Sney St < Sn@y+t-

N(t)

1
We claim that lim ——* = — almost surely.
t—oo "

Proof: Define

lez{wEQ\M%u},

Qo i={we Q| (N())(w) — cx}.

Then, Qp := Q1 N Qs has P{Q} = 1. (We assumed that P{{2;} = 1, but we need to show that
P{Q} =1 for this to be true. But,

: < .
tlggo]P’{N(t) < m} tlggoIP’{SmH >t} — 0.

We have N (t) —2 4 50 and by monotonicity of N(t), we see N(t) = a.8.00.)

Well,
SNt t—oo s
N [ a.s..
Now,
t SN(t)
— <
N@O) SN M
and g g
t — _ N(t) —
> Sv@-1 . Snw-r N(E) L 1=
N(t) N(t) N(t)—1 N(t)
NG .
Thus Y0) — p and : — 1~ . So, we have shown the claim. [

Theorem 7.5.2: (Glivenko-Cantelli Theorem)

Question: Let {X,,},>1 be iid random variables with common cdf F(z). How many samples do we
need to take to estimate the cdf well? (This is called the Kolmogorov-Smirnoff Test.)

Empirical Distribution Formula: Define
A( ) 1 L
Fo(x)=— E PRy
n & {Xi<z}

Precise Statement:

sup
z€R

Fo(z) — F(J;)‘ LN}
In other words, the convergence of F,(z) to F(z) is uniform.

Proof: See the online notes here:

http://uflprob.files.wordpress.com/2013/01/glivenko-cantelli-shaikh.pdf,


http://uflprob.files.wordpress.com/2013/01/glivenko-cantelli-shaikh.pdf
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Section 7.6 - The Kolmogorov Three Series Theorem

o0

Theorem: (Kolmogorov’s Three-Series Theorem) Let {X,,},>1 be independent. Then, ZX" converges
n=1

almost surely if and only if there exists ¢ > 0 such that:

(i) Y _P{|Xu| > ¢} < o0,
n=1
(i) Y Var (X,1(x,|<c}) < 0,
n=1
oo
(iii) Z E [Xn1{|Xn‘§c}] converges.
n=1

Remark: If X; > 0 for all ¢, then (i) and (iii) suffice. This is Exercise 7.15.

Proof: The necessity is hard to prove. There is a version in the book. A more natural proof uses the
Central Limit Theorem. Once we learn this, we’ll come back.

The proof of sufficiency is much easier. Define

X = Xnlyx,|<c}-

The first step is to check the tail equivalence of {X,} and {)}n}, i.e, that they converge/diverge

together i.e., that
ZP{)?n 4 Xn} < .
n=1

But, by construction

o0 o0
ZIP{Xn £ Xn} =3 P{X, > ¢} < .
n=1 n=1
i ~
It remains to show now that the truncated series Z X,, converges. Note that
n=1

i\/ar ()?n) = i\/ar (an{Xngc}) < 00
n=1 n=1

by assumption (ii). So, by Kolmogorov’s Convergence Criterion implies that
e ~ ~
> (%.-E %)
n=1

converges almost surely.

Noting that by (iii) that
Jm 3B (%

n

exists, so too does lim E Xk. By the tail equivalence that we showed, the proof is complete. [J
n—oo
k=1
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Remark: As mentioned in the remark before the proof, if X; > 0 for all 4, then we don’t need the hypothesis
(ii).

Proof: Suppose X; > 0. Then,

M2

> Var (Xalx,sep) = DB [X2Lx,<0] —E [Xaliy, <]

n=1 n=1

E[X21(x,<c}]
1

3
Il

E [Xnlix,<cp] < o0
1

3
Il

So, (ii) follows from (iii). We still need (i) to show tail-equivalent. O

Application: This applies to the convergence of series of “heavy-tailed random variables”, meaning that
E [|X;]] = co. Examples are the Cauchy distribution and the Pareto distribution.



Chapter 8

Chapter 8 - Convergence in
Distribution

Section 8.1 - Basic Definitions
Example: The following is an example of the type of problems that we are interested in.
Define U, such that
k 1
o=t}
n n

for k € [n]. In what sense does U,, — U := Unif([0, 1])?
We may attempt the following failed reasoning: Suppose we ask that for every A € B((0, 1]), we have
P{U, € A} - P{U € A}.
Why does this fail? Choose A = QN [0,1]. Then, for all n,
P{U,ec A} =1

but
P{U € A} =0.

So, this attempt at a definition of convergence in distribution fails.

Four Notations Of Convergence in Distribution:
Reminder: F is a distribution function if:
(i) F is right-continuous,
(ii) F is non-decreasing,
(iii) yll)r_noo F(z) =0 and yh_)nolo F(z)=1.
We use the notation F((a, b)) = F(b) — F(a).
(1) Vague Convergence: (Chung 68, Feller 71) We say that
F, ~F
if for every interval I with endpoints at which F' is continuous

Fo(I) — F(I).

67
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(2) Proper Convergence: (Feller '71) F,, converges properly to F if F,, —~ F (as above) and
additionally F(R) = 1.

(3) Weak Convergence: (Billingsly ’68) We say that
F, > F
if, for all x € C(F) := {x € R | F is continuous},

(4) Complete Convergence: (Loene, 77) We say that F), converges completely to F if F,, —— F
(as above) and F(R) = 1.

Theorem: If F(R) =1, then (1)—(4) are equivalent.
Proof:
(4) = (2): Let a,b € C(F). Then,
Fa((a,0]) = Fu(b) = Fu(a)
— F(b) — F(a)
= F((a,b]).
To extend this to all intervals (not just those with endpoints in the continuity set), we need to
following lemma.
Lemma 8.1: A distribution function is uniquely determined by its values on a dense set.

Proof: Suppose that Fp is defined on a dense set D, such that Fp satisfies the definition
of a distribution on the set D. Define

F(z):= yueljijD(y).
y>x

Now check that F(x) has all of the right properties. See the textbook for the full proof. O

This completes this portion of the proof.

(2) = (4) Assume that F,(I) — F(I) for all I such that F is continuous on I. Suppose that
a,b € C(F). Then,
Fa(b) 2 Ea((a,6]) = ((a.b]).
Thus,
lim inf F, (b) > F((a,b])

n— oo

and hence, taking the limit as a — —oc0

liminf F},(b) > F(b).

n— oo

Now suppose that ¢ < b < r for £, € C(F), and furthermore suppose that
F((6,r]9) <e.

Now,
F, ((¢, T’]C) — F ((f,r]c) .

So, given € > 0, there exists N such that for all n > N, we have

F, ((¢, r]C) < 2e.
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Thus
Fo(b) = F,(b) — Fr(£) + F,(0)
= F,((¢,b]) + F.(¢£)
< F((€,0]) + 2¢
Hence

So, we have equality.

The other equivalences are trivial. [J

Section 8.2 - Scheffé’s Lemma

Scheffé’s Lemma: Suppose F' and F;, are cdfs. Then,

sup |Fo(B) — / ful@) — f(z)] da.

BEB(R)

If f,(x) — f(z) almost everywhere, then F,, —— F.
Proof: Let B € BR. Then, since

[ ute) = fande = [ potarda = [ slaraa =110,

0= [ (@)= f@Nda+ [ (1) = f@)a.

we have

which implies that

/ (fale) — ()
BC

(fn(x) - f(x))da: :
B

Thus,
217 (5) ~ FB) = | [ (o) = Fots| + | [ (Fula) = )i
/|fn - Idw+/c\fn(m)—f(w)\d$
= [ 1) = s@) da.
Hence,
P(B) = F(B)| < 5 [ 1u(0) = f(a)] .

In order to equality under the supremum, we need only find one set B where equality holds. Define

B=A{z: falx) = f(2)}.
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Verify that this works.
Now suppose fr,(z) — f(x) almost everywhere. Then, (f — f,)™ — 0 almost everywhere. Also,
(f - fn)+ < f

since f, is a density and so is always positive. Additionally, f is integrable on R with respect to
Lebesgue measure.

Since
0=AU@%JM@M%
=/uw—nmﬁm—/mm—nmrm
R R

it follows that
Auw—n@wm=4mm—n@ﬁw+4mm—nwrm
=2Amm—anx

Thus, (f — fu)T € Ly and (f — f,)™ — 0 almost everywhere, so by dominated convergence,

/ |f(z) = fulx)|dz — 0. O
R

Example: (Order Statistics) Let {U,},>1 be a sequence of iid Unif([0,1]) random variables. Among the
first n, rewrite these in ascending order

U
Un,2) S U
Uu,3) SUggs < Ugsg

)

k
etc. Let k, be a sequence of integers such that — — 0. Define
n

kn,
U(kn 7”) - ;

k) o\ 1
Fn (1 > 1
n n n

Then, the density of £, converges to a standard normal density

Hence, by Scheffé’s Lemma,

1
V2T

sup e~ 24z — 0.

BeB(R)

P{gneB}—/B
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Section 8.3 - The Baby Skorohod Theorem

Remark: This section explores the relationship between almost sure convergence and weak convergence.

Notation: If random variables X, have cdfs F,, which converge weakly to some proper F', then we write
X,, = X where F is the cdf of X.

Proposition 8.3.1: Suppose X and {X,},>1 are random variables. Then, if X, LN X, we have
X, = X.

Proof: Suppose X, —> X i.c., IN with P{N} = 0 such that Vw € N, we have X,,(w) — X (w).
We want to show that for all x € C(F'), we have
Observe that

NYN{w: X(w) <z —h} C NNliminf{w : X,,(w) <z}

n—oo

C NN lianup{w s X (w) <z}
CNN{w: X(w) <z}
Taking probabilities,
F(z—h) <P {linngigf{Xn < m}}
<liminfP{X, <z} (by Fatou’s Lemma)

n—oQ

<limsupP{X, <z}

n—oo

n— oo

<P {lim sup{X,, < x}} (by Fatou’s Lemma)
< F(x).
Letting h — 0, we see that F(x — h) — F(x) because we assume = € C(F). So,

F(z) < liminf F,(z) < limsup F,(z) < F(z).

n—00 n—00

Thus, equality holds, and so F,(z) — F(z). O

Lemma: Suppose F), is the cdf of X,, so that F,, —— F. If t € (0,1) UC (F§"), then
F,~ — Fy .
Proof: Let ¢ be given. Given € > 0, there exists € C(Fp) such that
Fy(t)—e<z < F§(t)
because C(Fp)® is countable. By definition, if z < F§~(¢), then
Fy(z) < t.
Also, x € C(Fp), and so F,,(x) — Fy(z). So, for sufficiently large n, we have that

F,(z) <t.



72 CHAPTER 8. CHAPTER 8 - CONVERGENCE IN DISTRIBUTION

Thus,
Fi(t)—e<az<Fy(t)

which implies that
Fy(¢) < liminf F; (¢).

n—oo
To see the reverse inequality, let ¢’ > t. Then, there exists y € C(Fp) such that
Fiy(t)<y<Fy({t')+e.

This implies that
Fo(y) >t >t

Since y € C(Fy), we have that F,,(y) — F(y). So, for sufficiently large n, F,(y) > y, which implies
that y < F¥(¢). So,
Fy () +e>y> Fy(b).

Thus,
limsup Fi (t) < Fy ()

n—oo

and so
limsup Fji (t) < Fy (¢). O

n— oo

Baby Skorohod Theorem: Suppose {X,,},>1 are random variables defined on (€2, F,P) such that
X, = Xo. Then, there exist random variables {X},>0 defined on ([0, 1], B([0,1]),A) such that for each
n >0,

X, L x#
n n
and X7 22 X7

Proof: Define U ~ Unif([0,1]) and X}/ = F(U). Note that X7 : [0,1] — R. Then,

Py {X¥ <y} =X{te0,1]: F(t) <y}
=A{te[0,1]:t< F,(y)}
ie, X#* 2 X,.
Now,

A {t € [0,1]: X*(t) A Xf(t)} =\ {t c[0,1]: FS(t) A Fg*(t)}
= A{t €[0,1] : F§ (¢) is not continuous at ¢}
-0,

since the set of discontinuities is either empty or countable. [

Continuous Mapping Theorem: Suppose X,, = X;. Let g : R — R be such that
P{X, € Disc(g)} =0

(recall that Disc(g) is the discontinuity set of the function g). Then, g(X,,) = g(Xo), and furthermore, if g
is bounded, then
E[g(Xn)] = E[g(Xo)] .
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Proof: By Skorohod, there exists a sequence { X7} such that X7 2 X,,, defined on [0, 1] such that

X# 2 X
If X# € C(g), then X7 — X# implies g (X#) 22,y (Xg#). So,

Delta Method: Suppose
lS’n — W
Vn| /=) = Z
o

Then, if g has a nonzero derivative at u, we have
1
S ) —
W9,
(1)

\/ﬁ(g(n

ag’
Proof: Define .
z# L. /n (”
o
~—_———
Zn

where Z7# is defined on ([0, 1], 8([0,1]), A). Then, Z# —*>— Z#. Well,
#

o]
s (2GS) =9 a o g(“*¢a>9<ﬂ>
o og' (1)
oZ¥ _ ZijfE
s 9<N+\/ﬁ> 9(1) NG
oZ¥ g’ (1)
NG
a.s. Z#
Ly

Section 8.4 - Portmanteau Theorem
Portmanteau Theorem: Let {F,,} be a sequence of proper cdfs. Then, the following are equivalent.

(1) F, = F

(2) / fdF, — / fdFy. Equivalently, if X, is a random variable with distribution F;,, then for f bounded
E[f(Xn)] = E[f(Xo)].

and continuous,
(3) If A € B(R), and F(9(A)) =0, then F,,(A) — Fy(A).

Proof:
(1) = (2): Apply the Continuous Mapping Theorem. [J
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gr ()

(2) = (1): Let a,b € C(Fy). We want to show that F,,((a,b]) = Fy((a,b]). Consider {gi(x)} defin
by the picture below.
x

1

I
T
a

\l ai%
1[&,1)}'

Note that the g;’ are continuous, bounded, and that
lim gg(x)
k—o0

Well,
Ful(@.t) = [ L@y
< [ a@ar, (@)
noee /R gndFo ().

/R gndFo(z) —E2 [ 1R

Note that gp(z) <1 and gg(x) \ 14 Thus,
= FU([(I, b])

limsup F),((a, b)) < Fy([a,b]) = Fo[(a

n—oo

liminf F,,((a, b]) > Fy(a,b])

Also,

since a € C(Fp). To show that
n—oo

we need to pick hg(z) as follows.
gr()

ed

l

= 4

(by assumption)

"

i=i

7

The rest of the argument is analogous. [

Example: Define {X,,}2°; such that X, € {Z}
P {Xn =

Show that X,, = X, where X ~ Unif(]0, 1]).

n
and for each i,

-

1
—
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Proof: Note that F'(z) = « for all x € [0,1]. Use the Portmanteau Theorem. Let f be bounded

and continuous on [0, 1]. Then,
—~ (1)1
=3 (n) !

1
By Riemann Approximation, this converges to / f(x)dx (note dx = dF(z)) which equals E [f(z)].
0

7 S o)
)

Since f is continuous on [0, 1], it must also be uniformly continuous on this interval. So, let € > 0 be
give Then, there exists 67 > 0 such that for all  and y with |z —y| < §¢, we must have | f(z)— f(y)| < e.
Now, for € > 0, choose ny large enough such that

[E[f(Xn)] = E[£(

dz.

Then for n > ny,

Section 8.5 - More Relations Among Modes of Convergence

Proposition 8.5.1: Let {X,,},>1 and X be random variables on (Q2, F,P).
(i) If X, = X then X,, — X.

(i) If X,, — X then X,, = X.

Both converses are false.

Section 8.6 - New Convergences From Old

Theorem 8.6.1:
(a) If X, = X and X,, — V,, — 0, then Y,, = X.

(b) Equivalently, if X,, = X and &, — 0, then X,, + &, = X.
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Chapter 9 - Characteristic Functions
and the Central Limit Theorem

Section 9.1 - Review of Moment Generating Functions and the
Central Limit Theorem

Remark: The fundamental technical issue in studying the distribution of sums of random variables is the
following. Suppose X; and X5 are independent with cdfs F; and F5. Then,

P{X, + X, <t} = ﬂ (Fy x F)(dz, dy)
z+y<t

e3¢} t—y
/ (/ I3 (dx)) Fy(dy) (by Fubini’s Theorem)

— 00

~ [ Re-wR@
=: (F} x F»)(¢).
Definition: The characteristic function of X is:
= / e F(dx)
R
= / e f(x)da
R
=: f(t).

Recall: The moment generating function is

Mx(t) =E [¢"].

(For negative values of ¢, this it the Laplace Transform.) The problem with this is that the moment generating
function doesn’t always (or even typically) exist. On the other hand,

|62 (t)] = [E [e"¥]|
=& [Jo¥]
= 1.

76



SECTION 9.1 - REVIEW OF MOMENT GENERATING FUNCTIONS AND THE CENTRAL LIMIT THEOREMT7

Remark: Always remember that e = cos(tX) + isin(tX).

Remark: Why is E [etX ] called a moment generating function? The answer comes from the taylor expansion.

2X2  #3X3
tX __
N =t + -+
t2 t3
E[e¥] =1 +E[X]+ TE[X?] + B[]+
Mx(0) =1
2
Mk (t) = E[X]+tE [X?] + %E [X?] 4+
M (0) = E [X]
In general,
M () =E[X7]
den XN T
and
D (0) = wE[X"]
dtn "XV T '

Example: Let Z ~ Norm(0, 1). Then,

¢)z(t) —F [eitZ]

(Baby) Central Limit Theorem: Let {X,,}°2; be iid random variables with finite moments. Without
loss of generality, E [X,] = 0 and E [X?] = 1. Define

We claim that

where N ~ Norm(0, 1).
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Section 9.3 - Expansion of e**

Method: We compute that

GpeSn(t) = E |exp it(n )ixiﬂ

oo (1)
e o (1 () %) oy g

Expanding,
[t " it t2 5 it3 3 "
(o) )] - (o - e - i+
t2 1 \\"
(o el
t2 1 " _ 1
n—00 6_t2/2

Section 9.5 - Two Big Theorems: Uniqueness and Continuity
Remark: We now illustrate the above ideas as presented in Probability: Theory & Examples by Rick Durrett.

Notation: F(x) = P{X < x}. The associated probability measure will be denoted p(dx), so that

)= [ tan).

— 0o

If F' has a density, then
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Uniqueness of chfs: We look at the Inversion Formula: Let
¢(z) =E [¢"¥] = / e u(dw).
R
If a < b, then
1 [T e—ita _ g—ith
lim —/ %Wt)dt exists

T—oo 27 -7 1t

and equals p((a,b)) + %,u({a, b}).

Proof:
Derivation: Thoughts / Inspiration:
Define —ita —ith b
€ —¢ —it
T ,—ita _ ,—itb p = / e "dy| < b—a.
o [ a
-T

—1itb

1t
T —ita __ )
= / %e”ﬂ;(dm)dt
—-T JR it

T _—ita _ ,—ith
:// %e”zdtu(daﬁ)
RJ-T it

:/]R [/T Sln(t(m_a))dt_/T Sln(t(xt_b))dt] M(d$) Use e = COS(LL‘) +ZSID(LL') and note

-T t -T that the cos(x) terms cancel.
Define
R(O,T) = /T Sm(et)dt
) _r t
S(T) = / " sin)
0 X
= /(R(Jc —a,T)— R(x —b,T))u(dx) Note if § > 0, then
R
= / (2sgn(z — a)S(T|z — a|) — 2sgn(z — b)S(T|z — b|))u(da). R(0,T) = 25(10)
R

and if # < 0, then
Hence,

R(0,T) = 2sgn(0)S(T6)).

Note lim bm(x)dac - So,
T—oo Jo T 2
2r, x € (a,b)
lim (R(x —a,T) — R(z—b,T)) =1 =, x¢€{a,b}
Toree 0, z€ (—o00,a)U(b,0)
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Since R(0,T) < 2sup S(y) < oo, by BCLT,
yeR

T pl(a,) + gul{a,b}). O

Theorem: If / |p(t)|dt < oo, then p has a density

1) = 5= [ e ot

The key formula is

e~ T _ o —it(xz+h)
p((x, x4+ h)) = ! / ” ’ o(t)dt

o [ [ easna
/IHh 1 / ittty

Continuity Theorem: Suppose {{i, }n>1 is a sequence of probability measures with chfs {¢(n)}n>1.
(i) If pp, = p, then ¢, (t) — ¢(t) for all ¢.

(ii) If ¢y, (t) — @(t) for all t and for some ¢ which is continuous at 0, then the sequence of measures {ji, }n>1
is “tight” (see below), and i, = p.

Example: Note that '
»(0)=E [e"o'z] =1.

However, for example, let u, be the probability measure for a sequence of Gaussian random variables with
mean 0 and variance n. Now, the density is

1 -=2/en?)
ny 2w

and the chf is
dn(t) = 72,
Well, pointwise,

ott) = Jim on)={ ¢ 120

So, in this example, ¢(t) is not continuous at ¢ = 0.

Theorem: (Helly’s Selection Theorem) Suppose F;, is a sequence of distribution functions. Then, there
exists a subsequence F),, and a right continuous function F' such that

lim F, (y) = F(y)

k—o0

for all y € C(F).

Remark: F may not be a distribution function. For example, suppose a + b+ c =1 for a,b,c > 0
and define



SECTION 9.5 - TWO BIG THEOREMS: UNIQUENESS AND CONTINUITY 81

where G(z) is some distribution function. We have

b+ cG(x)
F 2T\t
"7 )
but
lim F(z)=b>0
T——00
and

lim F(z) =b+c<1.

T—r 00

Therefore, there exists a subsequence my C my_y such that F,,, ;)(qx) converges to some limit point,
which we denote G(gy).

Proof: Let {¢;} be an enumeration of the rationals. Note that for any k, {F(qx)}m>1 € [0,1].

Now define F,, := F,,, (). We claim that F,, (¢) — G(q) for all q. Note that
F(z) = inf G(q).
q>x
q€Q
It remains to show that Fy,(x) — F(z) for all z € C(F). Let
r<ro<zr<s
for r1,72,s € Q. Then,

F(z)—e< F(r1) < F(r2) < F(z) < F(s) < F(x + ¢).

Also
Fnk (7"2) — G(Tz) > F(T‘l)
and
F,, (s) = G(s) < F(s).
Hence

F,(x) = F(z). O

Definition: A sequence of probability measures {i, }>1 is tight if for all € > 0, there exists a finite interval
(a,b) such that

Ha((a,b]) > 1 - ¢

for all n sufficiently large.

Theorem: Every subsequential limit is the distribution function of a probability measure if and only if the
sequence {F, },>1 is tight, i.e., for all ¢, there exists M such that

limsup(l — F,(M)) — F,(—M) <e.

n—oo

Proof:
(<) Assume {F,} is tight and F,, — F weakly. Let r,s € C(F') such that
r<-M<M <s.
Since F,,, (r) — F(r) and F,,(s) — F(s), we have that
1—-F(s)+ F(r)= leIrolo(l —Fo.(s)+ Fp.(r))
<limsup(l — Fy, (s) + Fy, (1))

k— o0

<e O
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(=) (by contradiction) Suppose F,, is not tight. Then, there exists ny such that
1—F,, (k) + F,, (=k) > e
But, by Helly’s Selection Theorem, there exists ny, such that F,,;, = F for some F. So,

1-1F (S) i (T) _hIIl (1 lﬂk ; (S) lﬂk : (T))
j—00 J J
2 hl.n inf(l — 1 N (kj) I N (_kj))
J— J J
> €.

Hence, F' is not a distribution function. [1
Remark: We now prove the Continuity Theorem that we stated above.

Continuity Theorem: Suppose {{i, }n>1 is a sequence of probability measures with chfs {¢(n)}n>1.

(i) If py, = i, then ¢, (t) — ¢(t) for all .

(ii) If ¢n(t) — ¢(t) for all ¢ and for some ¢ which is continuous at 0, then the sequence of measures { i, }n>1
is “tight” (see below), and u, = pu.

Proof: Proving (i) is easy, using the Continuous Mapping Theorem. Note that e is bounded
and continuous. Hence, for all ¢,

E [eitXn} > E [eitX]

Pn(t) —— (1)

To prove (ii), we’ll first prove tightness by means of the estimate

ﬂn{x||x| > z} <o [ a-saa <2

—u
for sufficiently large n.

Note that

% / (1—e"™)dt =2 — % / (cos(tx) + isin(tz))dt

_, ! [sin(tfv)yu

T

t=—u

Now, integrate both sides with respect to p,(dz). Then,

o[ omar =22 [ a0,

U J_y

)

2 2
We can consider two estimates for the integral, for two different regions. On the interval (— ),
u u

we have that
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2 2
On the remaining region (—oo, —> U <7 OO)a

1

 fual

sin(ux)

ux

Hence,

[ s =2 [ 2 )

—u R uxr

_ Q/R (1 - Siné;””)) i (d2)
= /{m:m|>g} (1 - |U1$|> pn(dz)

> 9 / L n(dz)
{

@:|z|>2} 2

tre )
=pp x|z > =1
u

Recall the assumption that ¢(t) is continuous at ¢ = 0. Also note that

#(0) =E [ei@x} —1.
So, there exists § > 0 such that for all ¢ € [—4, 6], we have
€
1—o(t —.
1 o(t)] < &

Pick u such that 0 < u < min (6, %) Then,

L sl < [ Sa=e

—u u J_,

Now, since ¢, (t) — ¢(t) for all ¢, this implies by the Dominated Convergence Theorem that

1 /u (1= én(t))dt — % (1= )t

U J —u
Therefore, for sufficiently large n, we have that
1 u
L[ 0w <2
U —Uu
Therefore, {p,} is tight.

Fact: by (i), if a subsequence {pn, } is convergent, then it must converge to u. Also, by tightness,
every subsequence contains a further subsequence that converges (which, by (i), converges to p).

We claim that this implies that p, = pu.

Lemma: Let y, be a sequence of elements in a topological space. If every subsequence y,, has a
further subsequence Ynu, such that Yni, = Y then y,, — y.

Proof: Suppose not to the contrary that y,, 4 y. Then, there exists an open set G containing y
and a subsequence y,,,, such that y, ¢ G for all n,,. But, by hypothesis, there exists a further
subsequence y,, =~ — y. This is a contradiction, since this would require Yn,,, O eventually visit
G for all but finitely many ¢. [J
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Remark: The smoothness of ¢ at 0 is related to the decay of p at +oo.

Example: If / |x|" u(dz) < oo, then the chf ¢ of u has derivatives of order n given by

o) = [z e (o).
This implies that if X has n finite moments, then

o) = 30 LT amy

k=0

f@t)

o o (4mY SE T _
where f ~ o(t") if ];E% o 0.

To be precise, one can show that

eim _ i (l:')k

k=0

o el 2
< min , .
(n+1)!" n!

For small values of x, the first term in the minimum is small. For large values of x, the second term in the
minimum is small. Hence,

. " E[(itX)* _ " (it X))k
o) 32O g e 3 x|
k=0 k=0
e | (XM 21X
StE[m1n<(n+1)!, ] .

Note that this is o(t™) because

t‘Xln—&-l 2|X|n):|

lim E |min , =0,
t—0 (n+1)!" nl

since for any fixed t,

) t|X|n+1 2|X|n):| / t‘X|n+1 /oo 2|X|n
E , — dz) + dz),
|:m1n <(n + 1)' n! |z|<Z (n + 1)!,u( x) T>T n! :U‘( x)

. 2(n+1)
—

So, as t — 0, we see that |Z] — oo. Hence, the integrands are converging to the first term of the minimum.

where

t2 2
Corollary: Suppose E[X] = p and E[X?] = 02 < co. Then, ¢(t) =1 + ity — Ta + o(t?).

Remark: We've shown that if we have n moments, then ¢(™) exists. However, ¢/(0) may exist even if
E[|X|] = co. Despite this, we have the following proposition.

Proposition: Suppose that limsup p(h) — 26(0) + ¢(=H)

2 > —o0. Then, E [|X|?] < oc.
h\O

Proof: Firstly,

.2 hl‘
cihe _ o 4 g—iha (ez'hac/z . e—ihx/2>2 —4sin >

h? h? h?
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Hence,

hx
sin? ()
0 > —limsup $(h) = Q‘b;g) +o=h) _ 11211_36&4/ TQM(dx) > /\xﬁu(dx) ~E[X?]. D

Central Limit Theorem for iid Sequences: Suppose {X,, },>1 is iid with E[X,,] = p and Var [X,,] =
0?2 € (0,00). Then,
Sn — np
ovn

=7

where Z ~ N(0,1).
Proof: Without loss of generality, suppose p = 0. (Otherwise, define ~ X,, = X,, — u.) Then,

; o*t?
Mﬂ=EPﬁ&]=1—45*+MH)

Also,

t2 " . .
=(|1- o +ol|— . (since t is fixed)

We now claim that as n — oo, the quantity above converges to et’/2,

Lemma: Suppose that ¢, — ¢, where ¢,,c € C. Then,
(1 + @> — €°.
n
Proof of Lemma: Let {z1,...,2,},{w1,...,w,} C C with modulus < 6§ € R,. Then,
szf Hwk §0”*12|zkfwk|.
k=1 k=1 k=1
(The proof of this fact follows by induction.) Let

a=(1+2)

and let

wy, = /™,

Pick v > |¢| so that for sufficiently large n, we have |¢,| < v and ’C—n’ < 1. So,
n
Cp\™ 0% n—1 " Cn,
1 7) _efnl| < (1 7) ’1 no_ en/n
‘( + n “= * n ; + n ¢

() (3

n

2
§a<7>eom

n

2
Now, the theorem follows immediately if we set ¢, = o
n
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Section 9.8 - The Lindeberg-Feller CLT

Lindeberg-Feller Theorem: For every n, let {X,, x} for 1 <k < n be independent random variables with
E [X,, k] = 0. Suppose that

(i) > E[X2,] =0 >0, and
k=1

(ii) For all € > 0,

n

. 2
n,linéo;E[an,kl Lx, elzep| =0
:1

Then,

n
Spi=>_ Xni = N(0,0%).
k=1
Historically, this was phrased: “The sum of a large number of small independent erros is approximately
normal.”

Proof: By the continuity theorem, it suffices to show that

H ¢n k() = exp <—t;02) .
k=1

Observe that

2 2
4252 . —t°E [Xn k}
wk(t) — (1 - =|E [+ - |1 - ———=
(b ,k( ) ( 2 )’ [e } 1
_ —t2X2
< |E [e"¥mr] — <1 -E 2"k1>| (Jensen’s Inequality)
Xoxl® 20t X0nl?
. mm(u i’ 20X )]
3! 2!
[t | X0 ] 2
<E 5 LiXal<a 171Xkl Lx, 0z
< [t 2 2 2
< 5 B |Xnal Lgxai<er | 0B | [Xnkl" Lx, iz
— 0.
Therefore,
G (1) === 1 — 5 -

Earlier, we showed that if {z,} and {w,} have modulus < 6, then

n n n
sz*Hwk §9n71 E |zk7wk|.
k=1 k=1 k=1

2 2
t Ok

Choose zp k= ¢n k() and wy =1 — . We can then show (after some work) that

- - tQUi,k
o1 (1-252) -0

k=1 k=1
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n
Exercise: If max cn,kx — 0 and g Cn,k — A, then
<k<n
k=1

n
H 1—|—an )\.

2 2
t Ok

So, using the exercise, take ¢, 1 1= — . This completes the theorem. [J

Theorem: Without the hypothesis that the random variables are identically distributed, suppose E [X}] =0
and E [X,f] = 02, and suppose that there exists § > 0 such that E [X,f”] < c. Then,

S = N(0,0%).

N
Converse of Three Series Theorem: Let { X} be independent and define
Xi = Xil{x,j<e)-
Then,

D) SR (X > e} < oo,

k=1

ii) ZE [),(:;} converges,
k=1

(iii) i Var (Xvk) converges.
k=1

Suppose (i) fails. Then, since Z]P’{\X;J > ¢} = 0o, we have that
k=1

P {|X| > c infinitely often} = 1.

o0
Hence, E X}, cannot converge, a contradiction.
k=1

Suppose (iii) fails but (i) holds. [See book.]



Chapter 10

Chapter 10 - Martingales

Section 10.1 - The Radon-Nikodym Theorem

Definition: A Martingale prcoess is fair game, i.e., it has the property
E[X, | Fn] = Xm,

where F,, is everything that has happened as of time m < n.

Example: Let X, Y be the outcomes of two independent fair dice. Define S := X +Y and M := min(X,Y).
Then,

}P’{S:5|X:2}:P{S:5/\X:2}

P{X =2}
_ P{y=3AX=2}
B P{X =2}
_m_1

1

g 6

We can also calculate that, for example,
P{M=5|X=2}=0.

Consider the conditional expectations E[S | X] and E [M | X]. We compute the intermediate step:
E[S|X=1=)> k-P{S=k|X=1}
=0
7

P{Y=k—1AX=1}

:Hk P{X =1}

o P{Y =iAX =1}
=i=1(z+1)- PX 1)
—E[Y]+1

In general, for k € [6],

and so we say
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Similarly, for E [M | X],

E[M|X=1]=1

11
E[M[X=2]=1-P{Y =1}+2-P{Y €{2,3,4,5,6}} =
15
E[M|X:3]:1'P{Y:1}+2'P{Y:2}+3-P{Y€{3,4,5,6}}:E
1
E[M|X =4 = FS
20
EM|X=5]= n
21
EM|X =6]= =
So,
1,  with probability 1/6
%1, with probability 1/6
15
5 with probability 1/6
E[M]|X]=4¢ 18 . N
5 with probability 1/6
2
FO, with probability 1/6
21
5 with probability 1/6
Thus,
91
EEW ] X) = [EDI] X)dP = 25,

We can also calculate that 91

E[M]=—.
36
In general, if G C F, then for all A € G,

/AMdIP:/A]E[M|g]dP.

Example: Let Ty, T, ~ Exp(\) be iid. Set S =Ty + Ty and M = min(7;,T3). Then, P{T} <t} =1—e*
and the density is f(t) = Ae **. Then, we have the conditional probability “formula”

L P{S<tAT =t}

PiSstlhi=h} “= P{T =t}

Remember that
t+A
P{Ty € [t,t + A]} = / f(s)ds.
t

So,

P{SelIANTy e}
P{T, € I}

P eI~ ATy € 1}

- P{T, € I}

P{Sel|Tel,}=
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Remark: To construct conditional expectation, we need the notion of a Radon-Nikodym derivative.

Definition: Let (2, F) be a measure space and suppose p and v are two positive bounded measures on
(2, F). We say that v is absolutely continuous with respect to p, denotes v < p if

(1(A) =0] = [v(4) =0].

Example: The binomial distribution » (with n trials an success probability p) is not absolutely continuous
with respect to the Gaussian distribution, since (1) = 0, while v(1) = np(1 — p)"~! > 0.

Example: On the other hand, if A is the Lebesgue measure on [0, 1], then A < p, but p & A, because, for
example, A((—1,0)) = 0 but u((—1,0)) > 0.

Remark: Any two Gaussian measures are mutually absolutely continuous in finite dimensions, but it is
possible for them to be mutually singular in infinite dimension.

Definition: We say that v concentrates on A € F if v(A®) = 0. We say that v and p are mutually singular,
denotes u L v , if there exist events A, B € F such that AN B = , and v concentrates on A, while u
concentrates on B.

Theorem 10.1.1: (Lebesgue Decomposition Theorem) Suppose that © and v are positive, bounded measures
on (9, F).

(a) There exists a unique pair of positive bounded measures A, and A; on F such that
A=)y + As
and A\, < p, while A; L p. Furthermore A\, L Ag.

(b) There exists a nonnegative F-measurable function X with

/Xdu<oo

such that
No(E) = / Xdy
E

for all £ € F, and X is unique up to sets of y-measure 0.

Radon-Nikodym Theorem Let (2, 7, P) be a probability space. Suppose v is a positive bounded measure,
and v < P. Then, there exists an integrable random variable X € F such that

v(E) = / XdP
E
for all £ € F. X is P-almost-surely unique, and is written
dv
X=—
dpP’

or

dv = XdP.
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Sketch of Proof: Consider the following proposition.

Proposition: Let H be a Hilbert space with inner product (-,-). If L : H — R is a lienar functional
on H, then there exists a unique y € H such that L(z) = (z,y).

Proof: If L(x) = 0, then y = 0, and the proof is complete. Otherwise, without loss of generality,
suppose H is real and define
M:=xzeH: L(z) =0.

Since L is linear, M is a subspace. Since L is continuous, M is closed. Since L # 0, M # H.

Therefore, for all 2’ &€ M, by the Projection Theorem we have that there exists z; € M and
29 € M+ such that
2 = 21 + 29.

Hence M~ is nontrivial.

For some z ¢ M, define

_ L(z s
v (2,2) "
It follows that L)
L) = 5 L2)
Meanwhile,
L LeP
(yvy) - (Z,Z)Z( ’ ) (Z,Z) L(y)

Define x; and x5 such that

Now,
o H@)
RS ) R
(2,9) = (@1,9) + (@2,9) = 0+ (w2, ) = DY) _ )

(v, )

Uniqueness can alao be shown. [J

Lemma: (Integral Comparison) Consider (2, F,P) with G C F a o-subfield. Suppose X,Y € G are
integrable. Then, X =Y almost surely if and only if

/XdIP’:/YdIP’
A A

forall Aeg.

Proof: Supose v < P and define
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Then, Q is a probability measure and Q < P. Set

wz%m+@.

Define H := Lo(P*), i.e., H contains all X € F such that
/ X2dP* < oo.
Q

Consider the inner product
(Yl,Yl) = / Y1Y2d]P)*
Q

Note by Cauchy-Schwarz that

1/2 1/2
/YlYgd]P’* < (/ deP*) ( deP*) < o0.
Q Q Q

Define for Y € Ly (P*),

Q
By the previous Proposition, there exists Z € Ly (P*) such that

L(Y) = (Y, 2) :/YZdIP* - 1/ YZdIP’+1/ Y ZdQ.
Q 2 Jo 2 Jo

1/YZd]}D:/YdQ.
2 Q Q

l/Y(l—Z)sz YZ p.
Q 2 o 2

Let A € F, and define Y = I4. Then,
Z 7
1——=1)dQ = | —=dP.
/A( 2> N /,42

/AYdQ:Q(A):/AZd]P’*.

(&)
Q(A) = /A %d]?.

Corollary: Suppose Q and P are probability measures on (2, F), and suppose that Q < P. Let G C F be
a o-subfield, and let Q|g and ]P’|g be restrictions of Q and P to G. Then, in the space (€2, G),

By the definition of Z,

So,

Thus,

Next (see book for details),

and so

ng <<}P’|g

and

d@\g
d]P|g

is G-measurable.
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Remark: This relates to conditional expectation in the following way. Let X € Ly. Define

v(A) = /AXdIP

for all A € F. Then, v is finite and v < P. We want it to be true that

/GXdIP’:/GE[X\g]d]P’

_d1/|g
dP|;’

for all G € G, so
E[X |d]

which exists by the Radon-Nikodym Theorem.

Sections 10.2 / 10.3 - Definition / Properties of Conditional
Expectation

Definition: Conditional Probability is defined as follows, on the probability space (2, F,P) and o-subfield
g.
P{A|G}=E[1a]d].

(a) P{A | G} is G-measurable and integrable.

(b) /GIP{A |G}dP =P{ANG).

Properties: (for more details, read Section 10.3 of the textbook)
(i) Linearity
(i) If X € G and X € Ly, then E[X | G] = X almost surely.
(i) E[X | {0,Q}] = E[X].
(iv) Monotonicity
(v) Modulus Inequality:
EX |G <E[X]|[4].

(vi) Monotone Convergence Theorem

(vii) Fatou’s Lemma

(viii) Dominated Convergence Theorem

(ix) Product Rule: Suppose X and Y are random variables such that X, XY € L;. If Y € G, then
E[XY | G] = YE[X | G] almost surely.

Let A € G. Suppose we know that for any A € G, we have

/AYE (X | 4] dP:/AXYdP. (%)

Then,
/YE[X\g]d]P’:/XYd]P’:/IE[XY|Q}d]P’.
A A A
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Now, assume Y = 1, where A € G. Then, ANA € G, and

/ YE[X | G]dP = / E[X | G]dP (by the definition of Y
A AnA
= XdP (by conditional expectation)
AnA
= / XY dP.
A

This shows that (*) holds for simple random variables.

Next, suppose that
k
Y = Z cila,
i=1

holds by linearity. The, suppose that X and Y are nonnegative. Then, there exists a sequence of simple
random variables Y,, such that Y,, /' Y. Use Monotone Convergence. (The proof in the general case
follows the typical line of reasoning.)

(x) Smoothing: Suppose G; C Gy C F. Then, if X € L,j we have
EEX |G] |G =E[X [G]=E[E[X [G]]Ga].
Colloquially, the smaller o-field always wins. In particular,
EE[X | Gi]] =E[X].

Proof: Take A € G;. Then, E[X | G;] is Gi-measurable, and

/ E[E[X | G | Gi] dP = / E[X | Go] dP (by definition)
A A
- / XdP (since A C G C Go)
A
= / E[X | G]dP. O (by definition)
A

Theorem: Suppose E [XQ] < 00. Then, E[X | G] is the random variable Y € G that minimizes the mean-
squared error E [(X — Y)?].

Proof: Let Z € L?(G), where
L*(G)={Y €G|E[Y?] < oo}

Then, by the Product Rule,
ZE[X|G]|=E[ZX | g].

Note that E[|ZX]] < co by Cauchy-Schwarz. Taking expectations,
E[ZEX |G]|=E[E[ZX |G]| =E[ZX].

Thus,
EZ(X-E[X|G])]=0

for all Z € L?(G). Now suppose that Y € L?*(G) and define

Z=Y-E[X|G].
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Thus,

E[(X —Y)?]

(X = (Z+E[X|g))]

E
E|(X~E[X|9)) - 2)’]
E

(X —E[X|6)*| - 2E[Z (X ~E[X | G))] +E[2?].

=0

This quantity is minimized when E [ZQ] =0. 0O

Sections 10.4 / 10.5 - Martingales and Examples

Common Betting Scheme: Double-down until you win. We now express this formally.
Let {X;}22, be the outcomes of a fair game, taking values in {—1,1} with probability 3.
Let {B;}2, be the bets placed on each game.

Let {S;}$2, be the running total money in hand, so that

S, = So + i: B; X;.

i=1
Define Sy = 0 (thus assuming we can go into debt).
Define 7 := min{i : X; = 1}. We set B; := 1 and we have the recurrence

21 r>i—1
Bi = { 0, otherwise

By definition,
Sr=1.
In this construction, we’ve made the following assumptions:
- The X; are iid.
- The B; are finite (possibly unbounded) and are based entirely on past events, i.e., B; € o(X1,...,X;—1).
- The S; are finite (possibly unbounded) and are based entirely on past events.

Let (Q2, F,P) be a probability space. {X;}{2, are integrable F-measurable random variables. The sequence
of o-fields
.7:1‘ = O’(Xl,XQ,...,Xi)

satisfies the condition
FiCFHhC---CF.

Any such sequence of o-subfields is called a filtration. A sequence of random variables {B;}$°; that satisfies
B; € F; is called adapted to the filtration {F;} (in our construction, we need to shift an index by 1).

Definition: Let {M;}2; be a sequence of random variables satisfying:
(1) E[|M;]] < oo, for all 4.
(2) {M;}2, is adapted to some filtration {F;}52,.
(3) E[Miy1 | Fi] = M.
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We call {M;}72, a martingale with respect to the filtration {F;}52;.
1
Exercise:Let X; € {—1,1} with P{X,; =1} = 3 and X; iid. Let B; € F;_1. Let
Su =50+ BiX.

i=1

Then, {S,}22, is a martingale with respect to F,.

Observation: Let N be an integer. Suppose M; = m is given. Then,
(If the game is fair, your balance shouldn’t change.) This can be shown formally using the Smoothing
Property:

E[My]|=E[E[My | Fn-1]] =E[Mn_1] =--- =E[M;] =m.

Exercise: If k < n, then E [M,, | Fi] = M.

Remark: We've found an apparent contradiction. By the previous logic,
E[S;] =E[Sy) =0,

but we computed that
Sy =1.

Optional Sampling Theorem: If 7 is a certain kind of random time (called a stopping time) and we have
a martingale (M,,, F,,) which is “nice” (for now, this means bounded), then

E[M;] = E[M].

Definition: From here on out, we use the definitions:

Martingale: E [X,, | Fi] = Xk, VEk
Supermartingale: E[X,, | Fr] < Xk, Vk<n
Submartingale: E[X,, | Fx] > Xk, Vk<n

Sections 10.6 / 10.7 / 10.8 - Theorems on Martingales

Theorem: If (X,,F,) is a martingale and ¢ is a convex function with E [|¢(X,,)|] < oo for all n € N, then
(¢(Xp), Fpn) is a submartingale.

Proof: By Jensen’s Inequality,

E [¢(X'n+1) | -Fn] 2 (]E [Xn+1 ‘ fn]) = ¢(Xn)' O
Corollary: If p > 1 and (X,,, F,,) is a martingale with E [|X,,|P] < oo, then (XP,F,,) is a submartingale.

Theorem: If (X, F,) is a submartingale and ¢ is an increasing convex function with E [¢(X,,)] < oo for all
n € N, then (¢(X,,), Fy) is a submartingale.
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Exercise: Find a submartingale X,, such that X2 is a submartingale.

1 . . . 1. .
Solution: Define X,, := ——. This is an increasing sequence. However, X2 = — is decreasing.
n n

Corollary:
(a) If (X,,, F,,) is a submartingale, then (X,, —a)™ is a submartingale.

J\n

L 4

(b) If (X,,, Fy) is a supermartingale, then X,, A a is a supermartingale.

J\n

Pay

N
~

Definition: Define .
(H-X)p = Hy(Xp— Xp_1).
k=1

If (X, Fn) is a supermartingale and H,, is F,-predictable (i.e., H, € F,—1) and H,, is nonnegative and
bounded, then ((H - X),,Fy,) is a supermartingale.

Remark: Observe that

E [(H : X)7L+1 | -/T"n] =K [(H : X)n + Hn—i—l(Xn-i-l - Xn) ‘ -Fn]
E[(H : X)n | ]:n] +E[Hn+1(Xn+1 - Xn) | ]:n]

=(H - X)p+ H, (E[Xps1 — Xa)).

Now, H,,+1 > 0 by hypothesis, and so
E[Xn41— X | Fu] <0.

Thus
El(H - X)ngr | Fo] < (H - X)n. O
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Corollary: If (X,,F,) is a martingale, and H, is nonnegative, bounded, and F, predictable, then
((H - X)p,Fpn) is a martingale.

Definition: We say that a random variable 7 is a stopping time of {F,, },>1 if {T =n} € F,.

Example: Define F := min{n : X,, > 10} and L := max{n : X,, > 10}, with F,, = (X1, Xa,...). Then, F
is a stopping time of F,, and L is not.

The Upcrossing Lemma: Let (X,,, F;,) be a submartingale. Define a sequence of upcrossings {U,,} on an
interval (a,b) to be
U, = sup{k : Nop < n}

where { N} is defined by this picture:

H \ K ! H |
X l X
boo st Rt
X 1 X
XX stuff T X
X 1 1 X 1
o SRV
a.___>_<____JI ______ :_2< _____ o
X I X I
i x i
N1 NQ N3 N4
Then,
(b—a)E[U,] <E[(X, —a)*]E[(Xo—a)]
where

X = max(X,,0).
Proof: Define Y, := a+ (X, —a)". Y, is a submartingale. Now define
(H-Y)n =Y Hp(Ye—Yio1)
k=1
where Hy, = 1{ne(Nyua,Noven)}+ NOtE
(b—a)U, <(H-Y),.

Define K, :=1— H,, . Then,
Yo—-Yo=(H YY), + (K-y)n.

Now, because (K - Y)™ is also a submartingale,
E[(K-Y)n] 2 E[(K-Y)o] =0.

Hence,
E [Yn - YO] >E [(H : Y)n] > (b - Q)E [Un] .
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Martingale Convergence Theorem: If (X,,,F,) is a submartingale with sup, E[X;f] < oo, then as
n — oo, X, converges almost surely to a random variable X with E [|X]] < co.

Proof: Since (X —a)* < X7 + |a|, the Upcrossing Inequality implies that

E[U,] < w. (%)

As n — oo, we have that U, /' U, which is the total number of upcrossings over [a,b] by the whole
sequence { X, }n>1.
A priori, U may be co. However, by hypothesis,

E[XF E[X+
oy B+ ol _ sup, (B + o] _
n b—a b—a

Q.

Therefore,
E[U] < o

and

P{U < o} =1.
This holds for all pairs a,b € Q with a < b.
Now consider the event

QN 1= U {w dliminf X, (w) <a<b< limsuan(w)} )

n— 00
a.be® n— o0

(NL stands for “no limit”.) Note that P{Qnr} = 0, since such a path visits values above some b and
below some a infinitely often, meaning U(w) = oo, i.e., for all w € Qny,, we have U(w) = co.

Therefore,

liminf X,, = limsup X,
n—00 n—00

almost surely, i.e.,

X := lim X,
n— o0
exists. It remains to show that [E [ lim X, ] < Q.
n—o0

By Fatou’s Lemma, E[X ] < liminfE [X;/] < co. Hence, X < oo almost surely.

n—oo

On the other side,

[XF] - E[X,]. (since X, is submartingale)
Hence,
E[X"] <liminfE [X;] — E[X,]

<supE [X;[] — E [X]

< oo. U

Corollary: If (X, F,) is a supermartingale with X,, > 0, then as n — oo, we have X,, — X almost surely
and E [X] < E[X,].
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Doob’s Decomposition: Any submartingale (X,,,F,,) can be written uniquely as X,, = M,, + A,, where
(M,,, F,) is a martingale and A,, is F,,-predictable with A4,, = 0.

Proof: Define A, — A,,_1 := E[X,, | Fui1] — Xn—1. Then, M,, := X,, — A,,. To show that A, is
Fn-predictable, observe that

A= E[Xy | Froa] = Xp
k=1

and for each k the summand is Fr_1 C F,,_1. Thus, 4, € F,_1.

Meanwhile,

E [Mn+1 ‘ -Fn] =E [Xn+1 - AH-H | ]:n}
:E[Xn-i-l ‘]:n] _E[An-i-l |]:n]
=(Apt1—An+ X)) — Ana
=X, — A,
=M,. O

Sections 10.9 - 10.16 - More on Martingales

Definition: Let £ for i,n > 0 be iid nonnegative integer-valued random variables (a doubly-indexed family).
Define Zy := 1 and

+1 +1
Tugpo={ & Ttz Za>0
0, otherwise

Definition: Let & for 4,n > 0 be iid nonnegative integer-valued random variables (a doubly-indexed family).
Define Zy := 1 and

+1 +1
fooe | G g 250
0, otherwise

We say that the family {Z,} is a branching process.

Z,
Theorem: {Z} is a martingale. We use
I

Fn = U{gf}?io

£=0

Proof: We need to show that

Zn+1 Zn
¢ Lﬁ”“ f"] G

which is equivalent to showing that
E(Zns1 | Fol = pZn.

Observe that

Znir =Y Znilizu=ky = ) Zot1l{z,=k)-
k=0 k=1
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Hence,

o0

E(Znsr | Fol =E | Znsrliz,—iy | Fn
k=1

E [Zn—&-l]-{Zn:k} | Ful

E[1(z,-r)Zn+1 | Ful

M T T

Lz =B (& + -+ &) | 7]

el
Il

1
o
= kpliz, -k
k=1
= UZy.
Zn . :
Thus, — is a martingale. [J
M'ﬂ

Theorem: A nonnegative martingale converges almost surely.

Theorem 3.7 / 3.8: If u <1, then lim Z, = 0 almost surely.
n—oo

Zn : o :
Proof: If p < 1, then — blows up when Z,, # 0 (recall Z,, is nonnegative-integer-valued). So, if
Iun

Z,
Zy, # 0 on a set of positive measure, we must have that —Z diverges to infinity, which is a contradiction.
"

Hence Z,, = 0 almost surely, and we’re done.

Now consider the case p = 1. By the previous theorem, we have Z,, — Z,,. Therefore Z,, = Z,, for
all n larger than some sufficiently large N,,. If Z, = k then

Z7L+1 - IL+1+"'+£]:L+1 :k D

Theorem 3.9: If y > 1, then
P{Z, >0, for all n} > 0.

Define ¢(s) = Zpksk.

k>0

(a) Let 0y, :=P{Z,,, = 0} (the probability of extinction as of generation m). Then,

em = Zpk (em—l)k .
k=0

Proof: To see this, we can think about the recursive one-step analysis: We have Zy = 1 and

P{Zy=0}=> P{Z =k}0O; ,. O
k=0
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(b) Note 6., = ¢(0,—1). It’s always true that ¢'(1) = p. If g > 1, then there is a unique p < 1 such that
o(p) = p-

Proof: ¢(0) > 0 and ¢(1) = 1. By hypothesis, ¢’(1) > 1. Therefore, for sufficiently small ¢ > 0,
p(l—e€) <1l—e

This implies the existence of at least one fixed point by the Intermediate Value Theorem.

We want to calculate ¢”(0). We see that
¢"(0) = k(k —1)prs* 2.
k=2

There exists k > 2 such that pr > 0. ¢ is convex. Hence there is only 1 fixed point. [

(€) O — p
Proof: We know 0y = 0 and ¢(p) = p. ¢ is increasing (when ¢(0) < p) and so
9n+1 = ¢(9n) > en
and so {0, }nen is an increasing sequence. Use Newton’s method (also known as cobwebbing

analysis). O

Remark: We are working toward Doob’s Inequality and the Maximal Inequality. We need some
preliminaries.

Proposition: If (X,,,F,) is a submartingale and N is a stopping time with
P{N <k} =1,
then

E[Xo] <E[Xn] <E[X4].

Example: Let S, =1+ ka, with &, € {£1}, each with probability % Define
k=1

N::/{n:Sn:O}.

Then, E[Sp] = 1, but E[Sy] = 0, because N is an unbounded stopping time, and so the previous
proposition does not hold.

Proof: Recall that if (X,,,F,) is a submartingale, then so is (X,an,Fn). So,
(i) E[Xo] =E[Xnno) S E[Xnak] =E[Xn].

For (ii), define
Hy =1(ncny = Yin<n—1}

which is predictable. Now, (H - X),, is a submartingale. [J
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Doob’s Inequality: Let (X,,F,) be a submartingale. Define )/(\’n = max X,;". Let A > 0 and

A:={X, > A}. Then,
AP{A} <E[X,14] <E[X,+].

The term on the left is a “path property” and the term on the right is an “endpoint evaluation”.

Proof: Define
N :=inf{k: X, > Xor k=n}.

Since Xy > A on A, we have
AP{A} <E[Xpn14].

On AY, Xy = X,,. The second inequality is obvious. [J

Example: Let S, = & + -+ + &,, where the &; are iid with E[§;] = 0 and E [fﬂ < 0. Then, defining
X, := 582, we have that (X,,,0(&1,- -+ ,&,)) is a submartingale. So, Doob’s Inequality tells us that

[P’{ max |S,| > /\} < Var(Sn)-
1<k<n A2

L?P Maximum Inequality: Let (X,,, F;,) be a submartingale. Let p > 1. Then,

v p
E[%2] < 2 E[(x})].
Proof: Consider )?n A M for some M > 0. Note that when M > \j we have
{Xo AM > A} ={X, > A}

So,
E {()?n A M)P] - / pAPIP {)?n AM > /\} A
0
VR +
< /0 PA? </\ /QXn I{XNAM»}dIP’) X
X AM
= / X,J[/ pAP2d\dP (by Fubini’s Theorem)
Q 0
_ L/)ﬁ (Ranu)"" ap
p _ 1 o n n

< P E[(x)]"E {()?n AM)

q(pl)} a
S

(by Holder’s Inequality, with ¢ := ——)
p—
p P P
<(——) E[(Xx)"].
< (525) Bl
Now let M — oo and use the Monotone Convergence Theorem. []

Corollary: Define X := maxo<k<y |X|. Then,

Bl < (25) E1x.
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Definition: A family {X; : ¢t € T} of L' random variables indexed by T is uniformly integrable, or ui, if

Sup]E [|Xt|1{|Xt\>a}] —0
teT

as a — 0o. In other words,

/ | X, |dP — 0
{1X.|>a}

as a — oo, uniformly in t € T.

Simple Sufficient Criteria for Uniform Integrability:

(1) If T = {1}, then

/ 1 X1|dP = 0
{|X1]|>a}

since X; € L1.

(2) (Dominated Families) If there exists a dominating random variable Y € L! such that | X;| <Y for all ¢,
then {X;} is uniformly integrable.

(3) (Finite Families) If X; € L! for all i € [n], then {X;}"_; is uniformly integrable.

(4) (More Domination) Suppose that for each t € T, we have X; € Ly and Y; € Ly, and |X¢| < |Y;|. Then,
if {Y;} is uniformly integrable, so is {X;}.

(5) (Crystal Ball Condition) Let p > 0 and suppose

sup E [|X,[PT] < o0

for some ¢ > 0. Then, the family {|X,,|P} is uniformly integrable.

Proof:

Xn
—F(>1
al/P -

sup/ \Xn|pd}P’:sup/
n H|XnlP>a} n {
- sup/{ |Xn6} X7 - 1 dP

a5/P

} | X |P dP

X0
Ssup/|Xn|p~| 5 | dPp.
n Q a/P

Now apply the given condition. [J

Example: Let X,, be a sequence with E[X,,] = 0 and Var(X,,) = 1 for all n. Then, {X,,} is uniformly
integrable.
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Theorem: If X,, — X in probability (with X,, X € L'), then the following are equivalent.
(i) {X,} is uniformly integrable.
(ii)) X,, » X in L;.
(i) E [|X.]] — E[1X]).
Proof:
(i) = (ii) Define

M, z>M
om(z) == x, xz€(—M,M)

-M, z<-M

Then,
| X — X| <Xy — dm (X)) + o (Xn) — dar (X)| + [oar (X) — X,
Well,
| X = dar(Xn)| = (1Xn| = M)T < [ X[, 50

and

1X — om(X)| < [X[1qxp>m3-
For sufficiently large M,
E[[Xn — om(Xn)[] <€

by uniform integrability, and
E[X —ou(X)] <e

Since X € L'. Since X,, —— X and since ¢y, is bounded, we have
E{l¢n(Xn) = om(X)]] = 0
which shows that (i) = (ii). O
(ii) = (iii) Observe that | X| is convex. So,
[E[[Xn]] —E[X]] < [E[| X, — X[ = 0. O

(iii) = (i) Now define

0, x> M
P (z) == z, z€0,M—1]
linear interpolation, = € (M —1, M)

By the Dominated Convergence Theorem, for M sufficiently large,
E[1X]] - Ega(1X])] < 5.
By the Bounded Convergence Theorem,
E[dar(1Xal)] = E[ar(IXD]/
Using (iii), we have that for all n > N sufficiently large,

E [ Xn1{x, 1203 = E[|Xn]] — E [¥ar (| X0 ])]
<E[X[ - ERa (XD +3
< €.

By taking M sufficiently large, we can show that
E [|Xnl1qx,>0n] <€
for all n € [N]. O
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Theorem: For a submartingale (X,,, F,,), the following are equivalent.

(i) {X,} is uniformly integrable.

(ii) X,, converges almost surely to some X € L!.

(iii) X, — X in L1

1
Lemma: If {X,} C L! and X,, BN X, then
E [Xn]-A] — E [XIA]
for all A € F.
Proof:

CHAPTER 10 - MARTINGALES

E[Xa1a] ~ E[X14]] < E[|X, — X| L]

<E[IX, - X]]

— 0. O

Lemma: If (X,,, F,) is a martingale and X, L—1> X, then,
Xn =E[X | Fn].
Proof: The martingale property implies that if n > k, then

Now suppose 14 € Fj. Then,
E[X,14 | Fr] = Xila.

Taking expectations,
EE[X,14 | Fi]] = E[Xk14]

and so
E[Xn1a] =E[Xkl4].

By the previous lemma,

Lt Lt
|:Xn —>X:| - |:Xn1A —)XlA] .

Thus, for all A € Fy,
E[X;1a] =E[X14],

/Xkd}P’:/Xd]P’.
A A

ie.,

Recall the definition of conditional expectation: E [X | Fi] is (unique) random variable satisfying

/AXdP:/AE[XH-"k]dIP.

E[X | Fi] = Xp. O

Hence,
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Remark: The two results below follow from the previous lemma.

Theorem: Suppose F,, /' Foo, Where Foo :=0 (U fn>. Then, as n — oo, we have
neN

EX | F] 2 E[X | Fsol.

Theorem: (Lévy’s 0-1 Law) If F,, /' Fo and A € Foy, then

E[1A|fn} — 14.

Optional Stopping Times

Theorem: If L, M are stopping times with L < M almost surely and (Yasan, Fr) is a uniformly integrable
submartingale. Then,
E[YL] <E[Yum]

and
Y, <E[Yum | Fr].
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