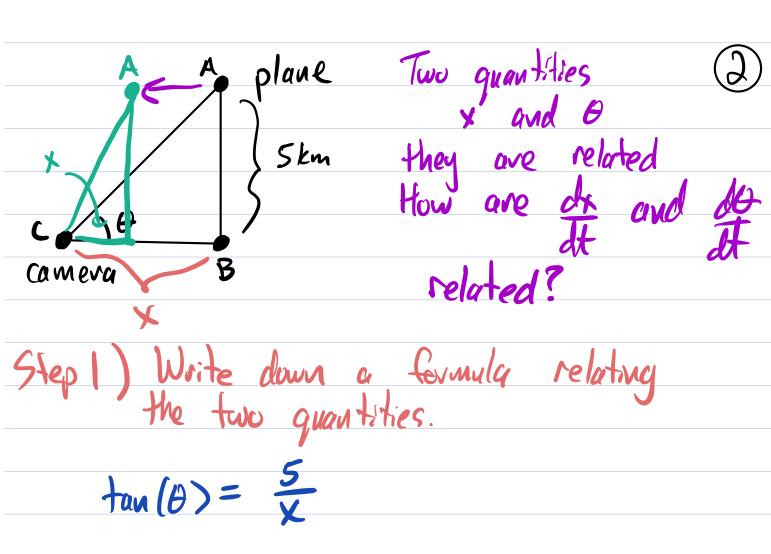
## Monday, Nov 28-Fall'22 Lecture #36

Announcements / Reminders


- \* Exam 3 an Wednesday in class (3.3-4.6)
- \* Wiley Plus #13 due Wed night (46)
- \* Quiz II in discussion on Thursday (4.3, 4.6)
- \* ODS Final exam scheduling deadline
- \* Course Evaluations are open

Today: Finish 4.6, start 5.1. Friday: Finish 5.1, go back emd do 4.7.

\*Firel Exam is the Monday of Exam Week, 12m-3pm

## 4.6- Related Rates

An airplane, flying at 450 km/hr at a constant altitude of 5 km, is approaching a camera mounted on the ground. Let  $\theta$  be the angle of elevation above the ground at which the camera is pointed. See Figure 4.93. When  $\theta = \pi/3$ , how fast does the camera have to rotate in order to keep the plane in view?



Step 2) Take the derivative of both sides with respect to a new variable t.

$$\tan(\theta(t)) = \frac{s}{x(t)}$$

$$\frac{d}{dt} \left( \tan(\theta(t)) \right) = \frac{d}{dt} \left( \frac{s}{x(t)} \right)$$

$$\frac{d}{dt} \left( \frac{s}{x(t)} \right)$$

$$\frac{d}{dt} \left( \frac{s}{x(t)} \right)$$

$$\frac{\partial^2(\theta(t))}{\partial \theta^2(\theta(t))} \frac{\partial^2(\theta(t))}{\partial \theta^2(\theta(t))} = -\frac{5}{(x(t))^2} \cdot x'(t)$$

$$\frac{1}{\cos^2(\theta)}\frac{d\theta}{dt} = -\frac{5}{x^2}\frac{dx}{dt}$$

this is an equation relating  $\theta, x, \frac{d\theta}{dt}, \frac{dx}{dt}$ 

If we know any 3, we can solve for the 4th.

Q: When O is T/3, what is dold?

Know:  $\theta = TT/3$ How can we find what x is when  $\theta = TT/3$ ?

 $tan(\theta) = \frac{5}{\chi} \implies tan(\frac{\pi}{3}) = \frac{5}{\chi}$ 

⇒ 13= 5

> x = 5 km

Need dx: -450 km/h

$$\frac{1}{\cos^2(\theta)} \cdot \frac{d\theta}{dt} = -\frac{5}{x^2} \cdot \frac{dx}{dt}$$

$$\Rightarrow \frac{d\theta}{(05^{2}(7/3))} = \frac{-5}{(5/3)^{2}} \cdot (-4/50)$$

$$\frac{d\theta}{dt} = \frac{-5}{(^{25}/3)} \cdot (-450) \cdot \cos^2(7^{1}/3)$$

Does it make souse that  $\theta$  is moveasing? Yes.

) about 1 degree per second

## Section 5.1 - How do we measure distance traveled? Chapter 5: integrals

(5)

Suppose you're driving a car and as you're speeding up, you look down at the speedometer every 2 securds and write down your speed.

| time (sec)     | ٥  | 2  | 4  | 6  | 8  | 10 |
|----------------|----|----|----|----|----|----|
| Speed (Attsec) | 20 | 30 | 38 | 44 | 48 | 50 |

Can you tell how for you traveled?

We don't know exactly because we don't have don't every milliserand, but we can estimate it!

\* Between t=0 and t=2, you troveled at least 2.20 = 40 feet

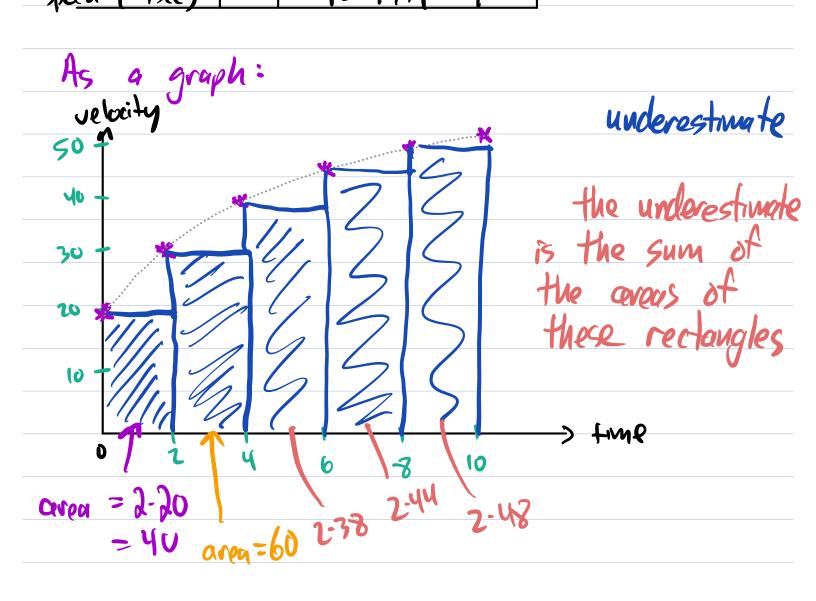
\* Botween t=2 and t=4, you traveled at least 2.30 = 60 ft.

## Overall: 2-20+2-30+2-38+2-44+2-48+2-506

= 360 feet

always speeding up \*

Overestmate: Use the right value of each 2 seared window


 $0 \rightarrow 2$   $2 \rightarrow 4$   $4 \rightarrow 6$   $6 \rightarrow 8$   $8 \rightarrow 10$   $2 \cdot 30 + 2 \cdot 38 + 2 \cdot 44 + 2 \cdot 48 + 2 \cdot 50$ = 420 feet

More accurate data (example: every I seared)

To better estimates

| time (sec)    | ٥  | 2  | 4  | 6  | 8  | 10 |
|---------------|----|----|----|----|----|----|
| Speed (Attse) | 70 | 30 | 38 | 44 | 48 | 50 |



