Your name:

Instructor (please circle):

- Craig Sutton
- Erik van Erp
- Jay Pantone

Alex Barnett

## Math 11 Fall 2015, Homework 2, due Wed Sep 30

Please show your work. No credit is given for solutions without work or justification.

(1) Let  $\mathcal{P}$  be the plane that passes through the points

$$P = (2, -2, 0),$$
  $Q = (3, 0, 5),$   $R = (-1, -1, -1).$ 

$$R = (-1, -1, -1).$$

(a) Find the equation of the plane  $\mathcal{P}$ .

- (b) Find the point T where  $\mathcal{P}$  intersects the line parametrized by
  - $\mathbf{r}(t) = \langle -3, 1, 0 \rangle + t \langle 1, 1, 0 \rangle$

(c) Write the coordinates of the point T from part (b) in spherical coordinates.

- (2) Let  $\mathbf{r}(t) = \langle \sec^2(t), e^t, 2t \rangle$ .
  - (a) Find the general antiderivative of  $\mathbf{r}(t)$ . (*Hint:* the general antiderivative of  $\sec^2(t)$  is  $\tan(t) + C$ .)

(b) Find the specific antiderivative  $\mathbf{R}(t)$  that satisfies the initial condition  $\mathbf{R}(0) = \langle 1, 1, 1 \rangle$ .

(c) Find a parametrization for the tangent line of  $\mathbf{r}(t)$  at t = 0.

- (3) Let  $\mathbf{r}(t) = \left(\frac{1}{5}, t^2, 2t^3\right)$ .
  - (a) Find the arc length of  $\mathbf{r}(t)$  from t=0 to t=1.

(b) Find the curvature of  $\mathbf{r}(t)$  at t=1.